Filtros : "Grichkov, Alexandre" Limpar

Filtros



Refine with date range


  • Source: Mathematical Proceedings of the Cambridge Philosophical Society. Unidade: IME

    Subjects: TEORIA DOS GRUPOS, LAÇOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GRICHKOV, Alexandre; ZAVARNITSINE, Andrei V. Moufang loops with nonnormal commutative centre. Mathematical Proceedings of the Cambridge Philosophical Society, Cambridge, v. 170, n. 3, p. 609-614, 2021. Disponível em: < https://doi.org/10.1017/S0305004119000549 > DOI: 10.1017/S0305004119000549.
    • APA

      Grichkov, A., & Zavarnitsine, A. V. (2021). Moufang loops with nonnormal commutative centre. Mathematical Proceedings of the Cambridge Philosophical Society, 170( 3), 609-614. doi:10.1017/S0305004119000549
    • NLM

      Grichkov A, Zavarnitsine AV. Moufang loops with nonnormal commutative centre [Internet]. Mathematical Proceedings of the Cambridge Philosophical Society. 2021 ; 170( 3): 609-614.Available from: https://doi.org/10.1017/S0305004119000549
    • Vancouver

      Grichkov A, Zavarnitsine AV. Moufang loops with nonnormal commutative centre [Internet]. Mathematical Proceedings of the Cambridge Philosophical Society. 2021 ; 170( 3): 609-614.Available from: https://doi.org/10.1017/S0305004119000549
  • Source: Communications in Algebra. Unidade: IME

    Subjects: ÁLGEBRAS DE LIE, SUPERÁLGEBRAS DE LIE, ÁLGEBRAS DE JORDAN

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GRICHKOV, Alexandre; ELGENDY, Hader A. The universal associative enveloping algebra of a Lie–Jordan algebra with a unit. Communications in Algebra, New York, Taylor and Francis, v. 49, n. 7, p. 2934-2940, 2021. Disponível em: < https://doi.org/10.1080/00927872.2021.1884691 > DOI: 10.1080/00927872.2021.1884691.
    • APA

      Grichkov, A., & Elgendy, H. A. (2021). The universal associative enveloping algebra of a Lie–Jordan algebra with a unit. Communications in Algebra, 49( 7), 2934-2940. doi:10.1080/00927872.2021.1884691
    • NLM

      Grichkov A, Elgendy HA. The universal associative enveloping algebra of a Lie–Jordan algebra with a unit [Internet]. Communications in Algebra. 2021 ; 49( 7): 2934-2940.Available from: https://doi.org/10.1080/00927872.2021.1884691
    • Vancouver

      Grichkov A, Elgendy HA. The universal associative enveloping algebra of a Lie–Jordan algebra with a unit [Internet]. Communications in Algebra. 2021 ; 49( 7): 2934-2940.Available from: https://doi.org/10.1080/00927872.2021.1884691
  • Source: Journal of Algebra. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, LAÇOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GRICHKOV, Alexandre; RASSKAZOVA, Marina; SABININA, Liudmila; SALIM, Mohamed. On Malcev algebras nilpotent by Lie center and corresponding analytic Moufang loops. Journal of Algebra, New York, Elsevier, v. 575, p. 67-77, 2021. Disponível em: < https://doi.org/10.1016/j.jalgebra.2021.02.004 > DOI: 10.1016/j.jalgebra.2021.02.004.
    • APA

      Grichkov, A., Rasskazova, M., Sabinina, L., & Salim, M. (2021). On Malcev algebras nilpotent by Lie center and corresponding analytic Moufang loops. Journal of Algebra, 575, 67-77. doi:10.1016/j.jalgebra.2021.02.004
    • NLM

      Grichkov A, Rasskazova M, Sabinina L, Salim M. On Malcev algebras nilpotent by Lie center and corresponding analytic Moufang loops [Internet]. Journal of Algebra. 2021 ; 575 67-77.Available from: https://doi.org/10.1016/j.jalgebra.2021.02.004
    • Vancouver

      Grichkov A, Rasskazova M, Sabinina L, Salim M. On Malcev algebras nilpotent by Lie center and corresponding analytic Moufang loops [Internet]. Journal of Algebra. 2021 ; 575 67-77.Available from: https://doi.org/10.1016/j.jalgebra.2021.02.004
  • Source: Journal of Number Theory. Unidade: IME

    Assunto: GEOMETRIA ALGÉBRICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GRICHKOV, Alexandre; LOGACHEV, D. 'h POT.1' ≠ 'h IND.'1 for Anderson t-motives. Journal of Number Theory, London, v. 225, p. 59-89, 2021. Disponível em: < https://doi.org/10.1016/j.jnt.2021.01.020 > DOI: 10.1016/j.jnt.2021.01.020.
    • APA

      Grichkov, A., & Logachev, D. (2021). 'h POT.1' ≠ 'h IND.'1 for Anderson t-motives. Journal of Number Theory, 225, 59-89. doi:10.1016/j.jnt.2021.01.020
    • NLM

      Grichkov A, Logachev D. 'h POT.1' ≠ 'h IND.'1 for Anderson t-motives [Internet]. Journal of Number Theory. 2021 ; 225 59-89.Available from: https://doi.org/10.1016/j.jnt.2021.01.020
    • Vancouver

      Grichkov A, Logachev D. 'h POT.1' ≠ 'h IND.'1 for Anderson t-motives [Internet]. Journal of Number Theory. 2021 ; 225 59-89.Available from: https://doi.org/10.1016/j.jnt.2021.01.020
  • Source: São Paulo Journal of Mathematical Sciences. Unidade: IME

    Assunto: SUPERÁLGEBRAS DE LIE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GRICHKOV, Alexandre; GUERREIRO, Marinês; ARAUJO, Wilian Francisco de. On the classification of simple Lie algebras of dimension seven over fields of characteristic 2. São Paulo Journal of Mathematical Sciences, Heidelberg, v. 14, n. 2, p. 703-713, 2020. Disponível em: < https://doi.org/10.1007/s40863-020-00180-6 > DOI: 10.1007/s40863-020-00180-6.
    • APA

      Grichkov, A., Guerreiro, M., & Araujo, W. F. de. (2020). On the classification of simple Lie algebras of dimension seven over fields of characteristic 2. São Paulo Journal of Mathematical Sciences, 14( 2), 703-713. doi:10.1007/s40863-020-00180-6
    • NLM

      Grichkov A, Guerreiro M, Araujo WF de. On the classification of simple Lie algebras of dimension seven over fields of characteristic 2 [Internet]. São Paulo Journal of Mathematical Sciences. 2020 ; 14( 2): 703-713.Available from: https://doi.org/10.1007/s40863-020-00180-6
    • Vancouver

      Grichkov A, Guerreiro M, Araujo WF de. On the classification of simple Lie algebras of dimension seven over fields of characteristic 2 [Internet]. São Paulo Journal of Mathematical Sciences. 2020 ; 14( 2): 703-713.Available from: https://doi.org/10.1007/s40863-020-00180-6
  • Source: Journal of Algebra and Its Applications. Unidade: IME

    Assunto: GEOMETRIA ALGÉBRICA

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EHBAUER, Stefan J; GRICHKOV, Alexandre; LOGACHEV, Dimitry. Calculation of 'h POT.1' of some Anderson t-motives. Journal of Algebra and Its Applications, Singapore, 2020. Disponível em: < https://doi.org/10.1142/S0219498822500177 > DOI: 10.1142/S0219498822500177.
    • APA

      Ehbauer, S. J., Grichkov, A., & Logachev, D. (2020). Calculation of 'h POT.1' of some Anderson t-motives. Journal of Algebra and Its Applications. doi:10.1142/S0219498822500177
    • NLM

      Ehbauer SJ, Grichkov A, Logachev D. Calculation of 'h POT.1' of some Anderson t-motives [Internet]. Journal of Algebra and Its Applications. 2020 ;Available from: https://doi.org/10.1142/S0219498822500177
    • Vancouver

      Ehbauer SJ, Grichkov A, Logachev D. Calculation of 'h POT.1' of some Anderson t-motives [Internet]. Journal of Algebra and Its Applications. 2020 ;Available from: https://doi.org/10.1142/S0219498822500177
  • Source: Proceedings of the Edinburgh Mathematical Society. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ANÉIS DE GRUPOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BOVDI, Victor A.; GRICHKOV, Alexandre. Unitary and symmetric units of a commutative group algebra. Proceedings of the Edinburgh Mathematical Society, Cambridge, v. 62, n. 3, p. 641-654, 2019. Disponível em: < http://dx.doi.org/10.1017/s0013091518000500 > DOI: 10.1017/s0013091518000500.
    • APA

      Bovdi, V. A., & Grichkov, A. (2019). Unitary and symmetric units of a commutative group algebra. Proceedings of the Edinburgh Mathematical Society, 62( 3), 641-654. doi:10.1017/s0013091518000500
    • NLM

      Bovdi VA, Grichkov A. Unitary and symmetric units of a commutative group algebra [Internet]. Proceedings of the Edinburgh Mathematical Society. 2019 ; 62( 3): 641-654.Available from: http://dx.doi.org/10.1017/s0013091518000500
    • Vancouver

      Bovdi VA, Grichkov A. Unitary and symmetric units of a commutative group algebra [Internet]. Proceedings of the Edinburgh Mathematical Society. 2019 ; 62( 3): 641-654.Available from: http://dx.doi.org/10.1017/s0013091518000500
  • Source: Algebra and Logic. Unidade: IME

    Subjects: TEORIA DOS GRUPOS, LAÇOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GRICHKOV, Alexandre; RASSKAZOVA, Marina; SABININA, Liudmila. An isotopically invariant property of automorphic Moufang loops. Algebra and Logic, New York, Springer, v. 58, p. 306-312, 2019. Disponível em: < https://doi.org/10.1007/s10469-019-09551-1 > DOI: 10.1007/s10469-019-09551-1.
    • APA

      Grichkov, A., Rasskazova, M., & Sabinina, L. (2019). An isotopically invariant property of automorphic Moufang loops. Algebra and Logic, 58, 306-312. doi:10.1007/s10469-019-09551-1
    • NLM

      Grichkov A, Rasskazova M, Sabinina L. An isotopically invariant property of automorphic Moufang loops [Internet]. Algebra and Logic. 2019 ; 58 306-312.Available from: https://doi.org/10.1007/s10469-019-09551-1
    • Vancouver

      Grichkov A, Rasskazova M, Sabinina L. An isotopically invariant property of automorphic Moufang loops [Internet]. Algebra and Logic. 2019 ; 58 306-312.Available from: https://doi.org/10.1007/s10469-019-09551-1
  • Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RASSKAZOVA, Diana; SHESTAKOV, Ivan P; GRICHKOV, Alexandre. Geometrias finitas, loops e quasigrupos relacionados. 2018.Universidade de São Paulo, São Paulo, 2018. Disponível em: < http://www.teses.usp.br/teses/disponiveis/45/45131/tde-25092019-125549/ >.
    • APA

      Rasskazova, D., Shestakov, I. P., & Grichkov, A. (2018). Geometrias finitas, loops e quasigrupos relacionados. Universidade de São Paulo, São Paulo. Recuperado de http://www.teses.usp.br/teses/disponiveis/45/45131/tde-25092019-125549/
    • NLM

      Rasskazova D, Shestakov IP, Grichkov A. Geometrias finitas, loops e quasigrupos relacionados [Internet]. 2018 ;Available from: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-25092019-125549/
    • Vancouver

      Rasskazova D, Shestakov IP, Grichkov A. Geometrias finitas, loops e quasigrupos relacionados [Internet]. 2018 ;Available from: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-25092019-125549/
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: LAÇOS, ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GRICHKOV, Alexandre; PEREZ-IZQUIERDO, José Maria. Lie's correspondence for commutative automorphic formal loops. Linear Algebra and its Applications, New York, v. 544, p. 460-501, 2018. Disponível em: < https://doi.org/10.1016/j.laa.2018.01.028 > DOI: 10.1016/j.laa.2018.01.028.
    • APA

      Grichkov, A., & Perez-Izquierdo, J. M. (2018). Lie's correspondence for commutative automorphic formal loops. Linear Algebra and its Applications, 544, 460-501. doi:10.1016/j.laa.2018.01.028
    • NLM

      Grichkov A, Perez-Izquierdo JM. Lie's correspondence for commutative automorphic formal loops [Internet]. Linear Algebra and its Applications. 2018 ; 544 460-501.Available from: https://doi.org/10.1016/j.laa.2018.01.028
    • Vancouver

      Grichkov A, Perez-Izquierdo JM. Lie's correspondence for commutative automorphic formal loops [Internet]. Linear Algebra and its Applications. 2018 ; 544 460-501.Available from: https://doi.org/10.1016/j.laa.2018.01.028
  • Source: International Journal of Algebra and Computation. Unidade: IME

    Assunto: LAÇOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GRICHKOV, Alexandre; PIRES, Rosemary Miguel. Variety of loops generated by code loops. International Journal of Algebra and Computation, Singapore, v. 28, n. 1, p. 163-177, 2018. Disponível em: < http://dx.doi.org/10.1142/s021819671850008x > DOI: 10.1142/s021819671850008x.
    • APA

      Grichkov, A., & Pires, R. M. (2018). Variety of loops generated by code loops. International Journal of Algebra and Computation, 28( 1), 163-177. doi:10.1142/s021819671850008x
    • NLM

      Grichkov A, Pires RM. Variety of loops generated by code loops [Internet]. International Journal of Algebra and Computation. 2018 ; 28( 1): 163-177.Available from: http://dx.doi.org/10.1142/s021819671850008x
    • Vancouver

      Grichkov A, Pires RM. Variety of loops generated by code loops [Internet]. International Journal of Algebra and Computation. 2018 ; 28( 1): 163-177.Available from: http://dx.doi.org/10.1142/s021819671850008x
  • Source: Journal of Algebra and Its Applications. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, TEORIA DA REPRESENTAÇÃO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GRICHKOV, Alexandre; MARKO, Frantisek. Description of costandard modules for Schur superalgebra S(2|2) in positive characteristic. Journal of Algebra and Its Applications, River Edge, v. 17, n. 2, p. 1-28, 2018. Disponível em: < http://dx.doi.org/10.1142/s021949881850038x > DOI: 10.1142/s021949881850038x.
    • APA

      Grichkov, A., & Marko, F. (2018). Description of costandard modules for Schur superalgebra S(2|2) in positive characteristic. Journal of Algebra and Its Applications, 17( 2), 1-28. doi:10.1142/s021949881850038x
    • NLM

      Grichkov A, Marko F. Description of costandard modules for Schur superalgebra S(2|2) in positive characteristic [Internet]. Journal of Algebra and Its Applications. 2018 ; 17( 2): 1-28.Available from: http://dx.doi.org/10.1142/s021949881850038x
    • Vancouver

      Grichkov A, Marko F. Description of costandard modules for Schur superalgebra S(2|2) in positive characteristic [Internet]. Journal of Algebra and Its Applications. 2018 ; 17( 2): 1-28.Available from: http://dx.doi.org/10.1142/s021949881850038x
  • Source: Communications in Algebra. Unidade: IME

    Subjects: TEORIA DOS GRUPOS, LAÇOS, COMBINATÓRIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GRICHKOV, Alexandre; RASSKAZOVA, Diana; RASSKAZOVA, Marina; STUHL, Izabella. Nilpotent Steiner loops of class 2. Communications in Algebra, New York, v. 46, n. 12, p. 5480-5486, 2018. Disponível em: < http://dx.doi.org/10.1080/00927872.2018.1470243 > DOI: 10.1080/00927872.2018.1470243.
    • APA

      Grichkov, A., Rasskazova, D., Rasskazova, M., & Stuhl, I. (2018). Nilpotent Steiner loops of class 2. Communications in Algebra, 46( 12), 5480-5486. doi:10.1080/00927872.2018.1470243
    • NLM

      Grichkov A, Rasskazova D, Rasskazova M, Stuhl I. Nilpotent Steiner loops of class 2 [Internet]. Communications in Algebra. 2018 ; 46( 12): 5480-5486.Available from: http://dx.doi.org/10.1080/00927872.2018.1470243
    • Vancouver

      Grichkov A, Rasskazova D, Rasskazova M, Stuhl I. Nilpotent Steiner loops of class 2 [Internet]. Communications in Algebra. 2018 ; 46( 12): 5480-5486.Available from: http://dx.doi.org/10.1080/00927872.2018.1470243
  • Source: Algebra and Logic. Unidade: IME

    Subjects: GRUPOS ALGÉBRICOS, ÁLGEBRAS DE LIE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GRICHKOV, Alexandre; RASSKAZOVA, M. N. Automorphism groups of diagonal Z p -forms of the Lie algebra sl 2(Q p ), p > 2. Algebra and Logic, New York, v. 56, n. 4, p. 269-280, 2017. Disponível em: < https://dx.doi.org/10.1007/s10469-017-9448-3 > DOI: 10.1007/s10469-017-9448-3.
    • APA

      Grichkov, A., & Rasskazova, M. N. (2017). Automorphism groups of diagonal Z p -forms of the Lie algebra sl 2(Q p ), p > 2. Algebra and Logic, 56( 4), 269-280. doi:10.1007/s10469-017-9448-3
    • NLM

      Grichkov A, Rasskazova MN. Automorphism groups of diagonal Z p -forms of the Lie algebra sl 2(Q p ), p > 2 [Internet]. Algebra and Logic. 2017 ; 56( 4): 269-280.Available from: https://dx.doi.org/10.1007/s10469-017-9448-3
    • Vancouver

      Grichkov A, Rasskazova MN. Automorphism groups of diagonal Z p -forms of the Lie algebra sl 2(Q p ), p > 2 [Internet]. Algebra and Logic. 2017 ; 56( 4): 269-280.Available from: https://dx.doi.org/10.1007/s10469-017-9448-3
  • Source: Journal of Group Theory. Unidade: IME

    Assunto: TEORIA DOS GRUPOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GAGOLA III, Stephen M.; GRICHKOV, Alexandre. Cyclic extensions of finite simple groups. Journal of Group Theory, Berlin, v. 20, n. 3, p. 1-11, 2017. Disponível em: < http://dx.doi.org/10.1515/jgth-2016-0039 > DOI: 10.1515/jgth-2016-0039.
    • APA

      Gagola III, S. M., & Grichkov, A. (2017). Cyclic extensions of finite simple groups. Journal of Group Theory, 20( 3), 1-11. doi:10.1515/jgth-2016-0039
    • NLM

      Gagola III SM, Grichkov A. Cyclic extensions of finite simple groups [Internet]. Journal of Group Theory. 2017 ; 20( 3): 1-11.Available from: http://dx.doi.org/10.1515/jgth-2016-0039
    • Vancouver

      Gagola III SM, Grichkov A. Cyclic extensions of finite simple groups [Internet]. Journal of Group Theory. 2017 ; 20( 3): 1-11.Available from: http://dx.doi.org/10.1515/jgth-2016-0039
  • Source: Journal of Number Theory. Unidade: IME

    Subjects: TEORIA DOS NÚMEROS, GEOMETRIA ALGÉBRICA, VARIEDADES ABELIANAS, MULTIPLICAÇÃO COMPLEXA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GRICHKOV, Alexandre; LOGACHEV, D. Lattice map for Anderson t-motives: First approach. Journal of Number Theory, Brugge, v. 180, p. 373-402, 2017. Disponível em: < http://dx.doi.org/10.1016/j.jnt.2017.04.004 > DOI: 10.1016/j.jnt.2017.04.004.
    • APA

      Grichkov, A., & Logachev, D. (2017). Lattice map for Anderson t-motives: First approach. Journal of Number Theory, 180, 373-402. doi:10.1016/j.jnt.2017.04.004
    • NLM

      Grichkov A, Logachev D. Lattice map for Anderson t-motives: First approach [Internet]. Journal of Number Theory. 2017 ; 180 373-402.Available from: http://dx.doi.org/10.1016/j.jnt.2017.04.004
    • Vancouver

      Grichkov A, Logachev D. Lattice map for Anderson t-motives: First approach [Internet]. Journal of Number Theory. 2017 ; 180 373-402.Available from: http://dx.doi.org/10.1016/j.jnt.2017.04.004
  • Source: Mathematical Notes. Unidade: IME

    Subjects: TEORIA DOS GRUPOS, LAÇOS, ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GORSHKOV, I. B.; GRICHKOV, Alexandre; ZAVARNITSINE, A. V. On two problems related to associators of Moufang loops. Mathematical Notes, New York, v. 101, n. 1-2, p. 230-233, 2017. Disponível em: < http://dx.doi.org/10.1134/s0001434617010278 > DOI: 10.1134/s0001434617010278.
    • APA

      Gorshkov, I. B., Grichkov, A., & Zavarnitsine, A. V. (2017). On two problems related to associators of Moufang loops. Mathematical Notes, 101( 1-2), 230-233. doi:10.1134/s0001434617010278
    • NLM

      Gorshkov IB, Grichkov A, Zavarnitsine AV. On two problems related to associators of Moufang loops [Internet]. Mathematical Notes. 2017 ; 101( 1-2): 230-233.Available from: http://dx.doi.org/10.1134/s0001434617010278
    • Vancouver

      Gorshkov IB, Grichkov A, Zavarnitsine AV. On two problems related to associators of Moufang loops [Internet]. Mathematical Notes. 2017 ; 101( 1-2): 230-233.Available from: http://dx.doi.org/10.1134/s0001434617010278
  • Source: Journal of Algebra. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, ÁLGEBRAS DE LIE, SUPERÁLGEBRAS DE LIE, COHOMOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GRICHKOV, Alexandre; ZUSMANOVICH, Pasha. Deformations of current Lie algebras. I. Small algebras in characteristic 2. Journal of Algebra, New York, v. 473, p. 513-544, 2017. Disponível em: < http://dx.doi.org/10.1016/j.jalgebra.2016.11.024 > DOI: 10.1016/j.jalgebra.2016.11.024.
    • APA

      Grichkov, A., & Zusmanovich, P. (2017). Deformations of current Lie algebras. I. Small algebras in characteristic 2. Journal of Algebra, 473, 513-544. doi:10.1016/j.jalgebra.2016.11.024
    • NLM

      Grichkov A, Zusmanovich P. Deformations of current Lie algebras. I. Small algebras in characteristic 2 [Internet]. Journal of Algebra. 2017 ; 473 513-544.Available from: http://dx.doi.org/10.1016/j.jalgebra.2016.11.024
    • Vancouver

      Grichkov A, Zusmanovich P. Deformations of current Lie algebras. I. Small algebras in characteristic 2 [Internet]. Journal of Algebra. 2017 ; 473 513-544.Available from: http://dx.doi.org/10.1016/j.jalgebra.2016.11.024
  • Source: Finite Fields and Their Applications. Unidade: IME

    Subjects: GEOMETRIA ALGÉBRICA, GEOMETRIA DIOFANTINA, ANÉIS E ÁLGEBRAS COMUTATIVOS, COMBINATÓRIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GRICHKOV, Alexandre; LOGACHEV, D. Resultantal varieties related to zeroes of L-functions of Carlitz modules. Finite Fields and Their Applications, San Diego, v. 38, p. 116–176, 2016. Disponível em: < http://dx.doi.org/10.1016/j.ffa.2015.12.004 > DOI: 10.1016/j.ffa.2015.12.004.
    • APA

      Grichkov, A., & Logachev, D. (2016). Resultantal varieties related to zeroes of L-functions of Carlitz modules. Finite Fields and Their Applications, 38, 116–176. doi:10.1016/j.ffa.2015.12.004
    • NLM

      Grichkov A, Logachev D. Resultantal varieties related to zeroes of L-functions of Carlitz modules [Internet]. Finite Fields and Their Applications. 2016 ; 38 116–176.Available from: http://dx.doi.org/10.1016/j.ffa.2015.12.004
    • Vancouver

      Grichkov A, Logachev D. Resultantal varieties related to zeroes of L-functions of Carlitz modules [Internet]. Finite Fields and Their Applications. 2016 ; 38 116–176.Available from: http://dx.doi.org/10.1016/j.ffa.2015.12.004
  • Source: Buletinul Academiei de Stiinte a Republicii Moldova. Matematica. Unidade: IME

    Assunto: LAÇOS

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GRICHKOV, Alexandre; RASSKAZOVA, Marina; SABININA, L. On isotopies of some classes of Moufang loops. Buletinul Academiei de Stiinte a Republicii Moldova. Matematica, Chisinau, v. 80, n. 1, p. 70-77, 2016.
    • APA

      Grichkov, A., Rasskazova, M., & Sabinina, L. (2016). On isotopies of some classes of Moufang loops. Buletinul Academiei de Stiinte a Republicii Moldova. Matematica, 80( 1), 70-77.
    • NLM

      Grichkov A, Rasskazova M, Sabinina L. On isotopies of some classes of Moufang loops. Buletinul Academiei de Stiinte a Republicii Moldova. Matematica. 2016 ; 80( 1): 70-77.
    • Vancouver

      Grichkov A, Rasskazova M, Sabinina L. On isotopies of some classes of Moufang loops. Buletinul Academiei de Stiinte a Republicii Moldova. Matematica. 2016 ; 80( 1): 70-77.

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2021