Filters : "Grichkov, Alexandre" Limpar

Filters



Refine with date range


  • Source: São Paulo Journal of Mathematical Sciences. Unidade: IME

    Subjects: INVARIANTES CONFORMES, PASSEIOS ALEATÓRIOS, PERCOLAÇÃO

    Available on 2023-03-24Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GREBENEV, Vladimir e GRICHKOV, Alexandre. SLE: diferential invariants study. São Paulo Journal of Mathematical Sciences, 2022Tradução . . Disponível em: https://doi.org/10.1007/s40863-022-00299-8. Acesso em: 30 set. 2022.
    • APA

      Grebenev, V., & Grichkov, A. (2022). SLE: diferential invariants study. São Paulo Journal of Mathematical Sciences. doi:10.1007/s40863-022-00299-8
    • NLM

      Grebenev V, Grichkov A. SLE: diferential invariants study [Internet]. São Paulo Journal of Mathematical Sciences. 2022 ;[citado 2022 set. 30 ] Available from: https://doi.org/10.1007/s40863-022-00299-8
    • Vancouver

      Grebenev V, Grichkov A. SLE: diferential invariants study [Internet]. São Paulo Journal of Mathematical Sciences. 2022 ;[citado 2022 set. 30 ] Available from: https://doi.org/10.1007/s40863-022-00299-8
  • Source: Journal of Algebra and Its Applications. Unidade: IME

    Subject: GEOMETRIA ALGÉBRICA

    Versão AceitaOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EHBAUER, Stefan J e GRICHKOV, Alexandre e LOGACHEV, Dimitry. Calculation of 'h POT.1' of some Anderson t-motives. Journal of Algebra and Its Applications, v. 21, n. 1, 2022Tradução . . Disponível em: https://doi.org/10.1142/S0219498822500177. Acesso em: 30 set. 2022.
    • APA

      Ehbauer, S. J., Grichkov, A., & Logachev, D. (2022). Calculation of 'h POT.1' of some Anderson t-motives. Journal of Algebra and Its Applications, 21( 1). doi:10.1142/S0219498822500177
    • NLM

      Ehbauer SJ, Grichkov A, Logachev D. Calculation of 'h POT.1' of some Anderson t-motives [Internet]. Journal of Algebra and Its Applications. 2022 ; 21( 1):[citado 2022 set. 30 ] Available from: https://doi.org/10.1142/S0219498822500177
    • Vancouver

      Ehbauer SJ, Grichkov A, Logachev D. Calculation of 'h POT.1' of some Anderson t-motives [Internet]. Journal of Algebra and Its Applications. 2022 ; 21( 1):[citado 2022 set. 30 ] Available from: https://doi.org/10.1142/S0219498822500177
  • Source: Journal of Algebra. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, ÁLGEBRAS DE LIE, SUPERÁLGEBRAS DE LIE

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GRICHKOV, Alexandre et al. On simple 15-dimensional Lie algebras in characteristic 2. Journal of Algebra, v. 593, p. 295-318, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2021.11.021. Acesso em: 30 set. 2022.
    • APA

      Grichkov, A., Guzzo Júnior, H., Rasskazova, M., & Zusmanovich, P. (2022). On simple 15-dimensional Lie algebras in characteristic 2. Journal of Algebra, 593, 295-318. doi:10.1016/j.jalgebra.2021.11.021
    • NLM

      Grichkov A, Guzzo Júnior H, Rasskazova M, Zusmanovich P. On simple 15-dimensional Lie algebras in characteristic 2 [Internet]. Journal of Algebra. 2022 ; 593 295-318.[citado 2022 set. 30 ] Available from: https://doi.org/10.1016/j.jalgebra.2021.11.021
    • Vancouver

      Grichkov A, Guzzo Júnior H, Rasskazova M, Zusmanovich P. On simple 15-dimensional Lie algebras in characteristic 2 [Internet]. Journal of Algebra. 2022 ; 593 295-318.[citado 2022 set. 30 ] Available from: https://doi.org/10.1016/j.jalgebra.2021.11.021
  • Source: Zeitschrift für angewandte Mathematik und Mechanik. Unidade: IME

    Subject: FLUXO TURBULENTO DOS FLUÍDOS

    Versão AceitaOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GREBENEV, Vladimir et al. Local equilibrium approximation in free turbulent flows: verification through the method of differential constrains. Zeitschrift für angewandte Mathematik und Mechanik, v. 101, n. 9, 2021Tradução . . Disponível em: https://doi.org/10.1002/zamm.202000095. Acesso em: 30 set. 2022.
    • APA

      Grebenev, V., Demenkov, A. G., Chernykh, G. G., & Grichkov, A. (2021). Local equilibrium approximation in free turbulent flows: verification through the method of differential constrains. Zeitschrift für angewandte Mathematik und Mechanik, 101( 9). doi:10.1002/zamm.202000095
    • NLM

      Grebenev V, Demenkov AG, Chernykh GG, Grichkov A. Local equilibrium approximation in free turbulent flows: verification through the method of differential constrains [Internet]. Zeitschrift für angewandte Mathematik und Mechanik. 2021 ; 101( 9):[citado 2022 set. 30 ] Available from: https://doi.org/10.1002/zamm.202000095
    • Vancouver

      Grebenev V, Demenkov AG, Chernykh GG, Grichkov A. Local equilibrium approximation in free turbulent flows: verification through the method of differential constrains [Internet]. Zeitschrift für angewandte Mathematik und Mechanik. 2021 ; 101( 9):[citado 2022 set. 30 ] Available from: https://doi.org/10.1002/zamm.202000095
  • Source: Communications in Algebra. Unidade: IME

    Subjects: ÁLGEBRAS DE LIE, SUPERÁLGEBRAS DE LIE, ÁLGEBRAS DE JORDAN

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GRICHKOV, Alexandre e ELGENDY, Hader A. The universal associative enveloping algebra of a Lie–Jordan algebra with a unit. Communications in Algebra, v. 49, n. 7, p. 2934-2940, 2021Tradução . . Disponível em: https://doi.org/10.1080/00927872.2021.1884691. Acesso em: 30 set. 2022.
    • APA

      Grichkov, A., & Elgendy, H. A. (2021). The universal associative enveloping algebra of a Lie–Jordan algebra with a unit. Communications in Algebra, 49( 7), 2934-2940. doi:10.1080/00927872.2021.1884691
    • NLM

      Grichkov A, Elgendy HA. The universal associative enveloping algebra of a Lie–Jordan algebra with a unit [Internet]. Communications in Algebra. 2021 ; 49( 7): 2934-2940.[citado 2022 set. 30 ] Available from: https://doi.org/10.1080/00927872.2021.1884691
    • Vancouver

      Grichkov A, Elgendy HA. The universal associative enveloping algebra of a Lie–Jordan algebra with a unit [Internet]. Communications in Algebra. 2021 ; 49( 7): 2934-2940.[citado 2022 set. 30 ] Available from: https://doi.org/10.1080/00927872.2021.1884691
  • Source: Mathematical Proceedings of the Cambridge Philosophical Society. Unidade: IME

    Subjects: TEORIA DOS GRUPOS, LAÇOS

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GRICHKOV, Alexandre e ZAVARNITSINE, Andrei V. Moufang loops with nonnormal commutative centre. Mathematical Proceedings of the Cambridge Philosophical Society, v. 170, n. 3, p. 609-614, 2021Tradução . . Disponível em: https://doi.org/10.1017/S0305004119000549. Acesso em: 30 set. 2022.
    • APA

      Grichkov, A., & Zavarnitsine, A. V. (2021). Moufang loops with nonnormal commutative centre. Mathematical Proceedings of the Cambridge Philosophical Society, 170( 3), 609-614. doi:10.1017/S0305004119000549
    • NLM

      Grichkov A, Zavarnitsine AV. Moufang loops with nonnormal commutative centre [Internet]. Mathematical Proceedings of the Cambridge Philosophical Society. 2021 ; 170( 3): 609-614.[citado 2022 set. 30 ] Available from: https://doi.org/10.1017/S0305004119000549
    • Vancouver

      Grichkov A, Zavarnitsine AV. Moufang loops with nonnormal commutative centre [Internet]. Mathematical Proceedings of the Cambridge Philosophical Society. 2021 ; 170( 3): 609-614.[citado 2022 set. 30 ] Available from: https://doi.org/10.1017/S0305004119000549
  • Source: Journal of Number Theory. Unidade: IME

    Subjects: DETERMINANTES, ÁLGEBRA COMPUTACIONAL

    Available on 2023-09-22Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GRICHKOV, Alexandre e LOGACHEV, D e ZOBNIN, A. L-functions of Carlitz modules, resultantal varieties and rooted binary trees - I. Journal of Number Theory, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jnt.2021.08.013. Acesso em: 30 set. 2022.
    • APA

      Grichkov, A., Logachev, D., & Zobnin, A. (2021). L-functions of Carlitz modules, resultantal varieties and rooted binary trees - I. Journal of Number Theory. doi:10.1016/j.jnt.2021.08.013
    • NLM

      Grichkov A, Logachev D, Zobnin A. L-functions of Carlitz modules, resultantal varieties and rooted binary trees - I [Internet]. Journal of Number Theory. 2021 ;[citado 2022 set. 30 ] Available from: https://doi.org/10.1016/j.jnt.2021.08.013
    • Vancouver

      Grichkov A, Logachev D, Zobnin A. L-functions of Carlitz modules, resultantal varieties and rooted binary trees - I [Internet]. Journal of Number Theory. 2021 ;[citado 2022 set. 30 ] Available from: https://doi.org/10.1016/j.jnt.2021.08.013
  • Source: Journal of Algebra and Its Applications. Unidade: IME

    Subjects: GEOMETRIA ALGÉBRICA, VARIEDADES ABELIANAS

    Versão AceitaOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GRICHKOV, Alexandre e LOGACHEV, Dmitry. Anderson t-motives and abelian varieties with MIQF: results coming from an analogy. Journal of Algebra and Its Applications, 2021Tradução . . Disponível em: https://doi.org/10.1142/S0219498822501717. Acesso em: 30 set. 2022.
    • APA

      Grichkov, A., & Logachev, D. (2021). Anderson t-motives and abelian varieties with MIQF: results coming from an analogy. Journal of Algebra and Its Applications. doi:10.1142/S0219498822501717
    • NLM

      Grichkov A, Logachev D. Anderson t-motives and abelian varieties with MIQF: results coming from an analogy [Internet]. Journal of Algebra and Its Applications. 2021 ;[citado 2022 set. 30 ] Available from: https://doi.org/10.1142/S0219498822501717
    • Vancouver

      Grichkov A, Logachev D. Anderson t-motives and abelian varieties with MIQF: results coming from an analogy [Internet]. Journal of Algebra and Its Applications. 2021 ;[citado 2022 set. 30 ] Available from: https://doi.org/10.1142/S0219498822501717
  • Source: Mathematical Proceedings of the Cambridge Philosophical Society. Unidade: IME

    Subjects: TEORIA DOS GRUPOS, LAÇOS

    Versão AceitaOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GRICHKOV, Alexandre e SABININA, Liudmila e ZELMANOV, Efim. The restricted Burnside problem for Moufang loops. Mathematical Proceedings of the Cambridge Philosophical Society, 2021Tradução . . Disponível em: https://doi.org/10.1017/S0305004121000517. Acesso em: 30 set. 2022.
    • APA

      Grichkov, A., Sabinina, L., & Zelmanov, E. (2021). The restricted Burnside problem for Moufang loops. Mathematical Proceedings of the Cambridge Philosophical Society. doi:10.1017/S0305004121000517
    • NLM

      Grichkov A, Sabinina L, Zelmanov E. The restricted Burnside problem for Moufang loops [Internet]. Mathematical Proceedings of the Cambridge Philosophical Society. 2021 ;[citado 2022 set. 30 ] Available from: https://doi.org/10.1017/S0305004121000517
    • Vancouver

      Grichkov A, Sabinina L, Zelmanov E. The restricted Burnside problem for Moufang loops [Internet]. Mathematical Proceedings of the Cambridge Philosophical Society. 2021 ;[citado 2022 set. 30 ] Available from: https://doi.org/10.1017/S0305004121000517
  • Source: Journal of Number Theory. Unidade: IME

    Subject: GEOMETRIA ALGÉBRICA

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GRICHKOV, Alexandre e LOGACHEV, D. 'h POT.1' ≠ 'h IND.'1 for Anderson t-motives. Journal of Number Theory, v. 225, p. 59-89, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jnt.2021.01.020. Acesso em: 30 set. 2022.
    • APA

      Grichkov, A., & Logachev, D. (2021). 'h POT.1' ≠ 'h IND.'1 for Anderson t-motives. Journal of Number Theory, 225, 59-89. doi:10.1016/j.jnt.2021.01.020
    • NLM

      Grichkov A, Logachev D. 'h POT.1' ≠ 'h IND.'1 for Anderson t-motives [Internet]. Journal of Number Theory. 2021 ; 225 59-89.[citado 2022 set. 30 ] Available from: https://doi.org/10.1016/j.jnt.2021.01.020
    • Vancouver

      Grichkov A, Logachev D. 'h POT.1' ≠ 'h IND.'1 for Anderson t-motives [Internet]. Journal of Number Theory. 2021 ; 225 59-89.[citado 2022 set. 30 ] Available from: https://doi.org/10.1016/j.jnt.2021.01.020
  • Source: Zeitschrift für angewandte Mathematik und Physik. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, GEOMETRIA DIFERENCIAL, GRUPOS DE LIE

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GREBENEV, Vladimir et al. Second-order invariants of the inviscid Lundgren–Monin–Novikov equations for 2d vorticity fields. Zeitschrift für angewandte Mathematik und Physik, v. 72, n. artigo 129, p. 1-14, 2021Tradução . . Disponível em: https://doi.org/10.1007/s00033-021-01562-2. Acesso em: 30 set. 2022.
    • APA

      Grebenev, V., Grichkov, A., Oberlack, M., & Waclawczyk, M. (2021). Second-order invariants of the inviscid Lundgren–Monin–Novikov equations for 2d vorticity fields. Zeitschrift für angewandte Mathematik und Physik, 72( artigo 129), 1-14. doi:10.1007/s00033-021-01562-2
    • NLM

      Grebenev V, Grichkov A, Oberlack M, Waclawczyk M. Second-order invariants of the inviscid Lundgren–Monin–Novikov equations for 2d vorticity fields [Internet]. Zeitschrift für angewandte Mathematik und Physik. 2021 ; 72( artigo 129): 1-14.[citado 2022 set. 30 ] Available from: https://doi.org/10.1007/s00033-021-01562-2
    • Vancouver

      Grebenev V, Grichkov A, Oberlack M, Waclawczyk M. Second-order invariants of the inviscid Lundgren–Monin–Novikov equations for 2d vorticity fields [Internet]. Zeitschrift für angewandte Mathematik und Physik. 2021 ; 72( artigo 129): 1-14.[citado 2022 set. 30 ] Available from: https://doi.org/10.1007/s00033-021-01562-2
  • Source: Journal of Algebra. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, LAÇOS

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GRICHKOV, Alexandre et al. On Malcev algebras nilpotent by Lie center and corresponding analytic Moufang loops. Journal of Algebra, v. 575, p. 67-77, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2021.02.004. Acesso em: 30 set. 2022.
    • APA

      Grichkov, A., Rasskazova, M., Sabinina, L., & Salim, M. (2021). On Malcev algebras nilpotent by Lie center and corresponding analytic Moufang loops. Journal of Algebra, 575, 67-77. doi:10.1016/j.jalgebra.2021.02.004
    • NLM

      Grichkov A, Rasskazova M, Sabinina L, Salim M. On Malcev algebras nilpotent by Lie center and corresponding analytic Moufang loops [Internet]. Journal of Algebra. 2021 ; 575 67-77.[citado 2022 set. 30 ] Available from: https://doi.org/10.1016/j.jalgebra.2021.02.004
    • Vancouver

      Grichkov A, Rasskazova M, Sabinina L, Salim M. On Malcev algebras nilpotent by Lie center and corresponding analytic Moufang loops [Internet]. Journal of Algebra. 2021 ; 575 67-77.[citado 2022 set. 30 ] Available from: https://doi.org/10.1016/j.jalgebra.2021.02.004
  • Source: São Paulo Journal of Mathematical Sciences. Unidade: IME

    Subject: SUPERÁLGEBRAS DE LIE

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GRICHKOV, Alexandre e GUERREIRO, Marinês e ARAUJO, Wilian Francisco de. On the classification of simple Lie algebras of dimension seven over fields of characteristic 2. São Paulo Journal of Mathematical Sciences, v. 14, n. 2, p. 703-713, 2020Tradução . . Disponível em: https://doi.org/10.1007/s40863-020-00180-6. Acesso em: 30 set. 2022.
    • APA

      Grichkov, A., Guerreiro, M., & Araujo, W. F. de. (2020). On the classification of simple Lie algebras of dimension seven over fields of characteristic 2. São Paulo Journal of Mathematical Sciences, 14( 2), 703-713. doi:10.1007/s40863-020-00180-6
    • NLM

      Grichkov A, Guerreiro M, Araujo WF de. On the classification of simple Lie algebras of dimension seven over fields of characteristic 2 [Internet]. São Paulo Journal of Mathematical Sciences. 2020 ; 14( 2): 703-713.[citado 2022 set. 30 ] Available from: https://doi.org/10.1007/s40863-020-00180-6
    • Vancouver

      Grichkov A, Guerreiro M, Araujo WF de. On the classification of simple Lie algebras of dimension seven over fields of characteristic 2 [Internet]. São Paulo Journal of Mathematical Sciences. 2020 ; 14( 2): 703-713.[citado 2022 set. 30 ] Available from: https://doi.org/10.1007/s40863-020-00180-6
  • Source: Proceedings of the Edinburgh Mathematical Society. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ANÉIS DE GRUPOS

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BOVDI, Victor A. e GRICHKOV, Alexandre. Unitary and symmetric units of a commutative group algebra. Proceedings of the Edinburgh Mathematical Society, v. 62, n. 3, p. 641-654, 2019Tradução . . Disponível em: http://dx.doi.org/10.1017/s0013091518000500. Acesso em: 30 set. 2022.
    • APA

      Bovdi, V. A., & Grichkov, A. (2019). Unitary and symmetric units of a commutative group algebra. Proceedings of the Edinburgh Mathematical Society, 62( 3), 641-654. doi:10.1017/s0013091518000500
    • NLM

      Bovdi VA, Grichkov A. Unitary and symmetric units of a commutative group algebra [Internet]. Proceedings of the Edinburgh Mathematical Society. 2019 ; 62( 3): 641-654.[citado 2022 set. 30 ] Available from: http://dx.doi.org/10.1017/s0013091518000500
    • Vancouver

      Bovdi VA, Grichkov A. Unitary and symmetric units of a commutative group algebra [Internet]. Proceedings of the Edinburgh Mathematical Society. 2019 ; 62( 3): 641-654.[citado 2022 set. 30 ] Available from: http://dx.doi.org/10.1017/s0013091518000500
  • Source: Algebra and Logic. Unidade: IME

    Subjects: TEORIA DOS GRUPOS, LAÇOS

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GRICHKOV, Alexandre e RASSKAZOVA, Marina e SABININA, Liudmila. An isotopically invariant property of automorphic Moufang loops. Algebra and Logic, v. 58, p. 306-312, 2019Tradução . . Disponível em: https://doi.org/10.1007/s10469-019-09551-1. Acesso em: 30 set. 2022.
    • APA

      Grichkov, A., Rasskazova, M., & Sabinina, L. (2019). An isotopically invariant property of automorphic Moufang loops. Algebra and Logic, 58, 306-312. doi:10.1007/s10469-019-09551-1
    • NLM

      Grichkov A, Rasskazova M, Sabinina L. An isotopically invariant property of automorphic Moufang loops [Internet]. Algebra and Logic. 2019 ; 58 306-312.[citado 2022 set. 30 ] Available from: https://doi.org/10.1007/s10469-019-09551-1
    • Vancouver

      Grichkov A, Rasskazova M, Sabinina L. An isotopically invariant property of automorphic Moufang loops [Internet]. Algebra and Logic. 2019 ; 58 306-312.[citado 2022 set. 30 ] Available from: https://doi.org/10.1007/s10469-019-09551-1
  • Unidade: IME

    Subject: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    Online source accessHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RASSKAZOVA, Diana. Geometrias finitas, loops e quasigrupos relacionados. 2018. Tese (Doutorado) – Universidade de São Paulo, São Paulo, 2018. Disponível em: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-25092019-125549/. Acesso em: 30 set. 2022.
    • APA

      Rasskazova, D. (2018). Geometrias finitas, loops e quasigrupos relacionados (Tese (Doutorado). Universidade de São Paulo, São Paulo. Recuperado de http://www.teses.usp.br/teses/disponiveis/45/45131/tde-25092019-125549/
    • NLM

      Rasskazova D. Geometrias finitas, loops e quasigrupos relacionados [Internet]. 2018 ;[citado 2022 set. 30 ] Available from: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-25092019-125549/
    • Vancouver

      Rasskazova D. Geometrias finitas, loops e quasigrupos relacionados [Internet]. 2018 ;[citado 2022 set. 30 ] Available from: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-25092019-125549/
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: LAÇOS, ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GRICHKOV, Alexandre e PEREZ-IZQUIERDO, José Maria. Lie's correspondence for commutative automorphic formal loops. Linear Algebra and its Applications, v. 544, p. 460-501, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2018.01.028. Acesso em: 30 set. 2022.
    • APA

      Grichkov, A., & Perez-Izquierdo, J. M. (2018). Lie's correspondence for commutative automorphic formal loops. Linear Algebra and its Applications, 544, 460-501. doi:10.1016/j.laa.2018.01.028
    • NLM

      Grichkov A, Perez-Izquierdo JM. Lie's correspondence for commutative automorphic formal loops [Internet]. Linear Algebra and its Applications. 2018 ; 544 460-501.[citado 2022 set. 30 ] Available from: https://doi.org/10.1016/j.laa.2018.01.028
    • Vancouver

      Grichkov A, Perez-Izquierdo JM. Lie's correspondence for commutative automorphic formal loops [Internet]. Linear Algebra and its Applications. 2018 ; 544 460-501.[citado 2022 set. 30 ] Available from: https://doi.org/10.1016/j.laa.2018.01.028
  • Source: Communications in Algebra. Unidade: IME

    Subjects: TEORIA DOS GRUPOS, LAÇOS, COMBINATÓRIA

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GRICHKOV, Alexandre et al. Nilpotent Steiner loops of class 2. Communications in Algebra, v. 46, n. 12, p. 5480-5486, 2018Tradução . . Disponível em: http://dx.doi.org/10.1080/00927872.2018.1470243. Acesso em: 30 set. 2022.
    • APA

      Grichkov, A., Rasskazova, D., Rasskazova, M., & Stuhl, I. (2018). Nilpotent Steiner loops of class 2. Communications in Algebra, 46( 12), 5480-5486. doi:10.1080/00927872.2018.1470243
    • NLM

      Grichkov A, Rasskazova D, Rasskazova M, Stuhl I. Nilpotent Steiner loops of class 2 [Internet]. Communications in Algebra. 2018 ; 46( 12): 5480-5486.[citado 2022 set. 30 ] Available from: http://dx.doi.org/10.1080/00927872.2018.1470243
    • Vancouver

      Grichkov A, Rasskazova D, Rasskazova M, Stuhl I. Nilpotent Steiner loops of class 2 [Internet]. Communications in Algebra. 2018 ; 46( 12): 5480-5486.[citado 2022 set. 30 ] Available from: http://dx.doi.org/10.1080/00927872.2018.1470243
  • Source: International Journal of Algebra and Computation. Unidade: IME

    Subject: LAÇOS

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GRICHKOV, Alexandre e PIRES, Rosemary Miguel. Variety of loops generated by code loops. International Journal of Algebra and Computation, v. 28, n. 1, p. 163-177, 2018Tradução . . Disponível em: http://dx.doi.org/10.1142/s021819671850008x. Acesso em: 30 set. 2022.
    • APA

      Grichkov, A., & Pires, R. M. (2018). Variety of loops generated by code loops. International Journal of Algebra and Computation, 28( 1), 163-177. doi:10.1142/s021819671850008x
    • NLM

      Grichkov A, Pires RM. Variety of loops generated by code loops [Internet]. International Journal of Algebra and Computation. 2018 ; 28( 1): 163-177.[citado 2022 set. 30 ] Available from: http://dx.doi.org/10.1142/s021819671850008x
    • Vancouver

      Grichkov A, Pires RM. Variety of loops generated by code loops [Internet]. International Journal of Algebra and Computation. 2018 ; 28( 1): 163-177.[citado 2022 set. 30 ] Available from: http://dx.doi.org/10.1142/s021819671850008x
  • Source: Journal of Algebra and Its Applications. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, TEORIA DA REPRESENTAÇÃO

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GRICHKOV, Alexandre e MARKO, Frantisek. Description of costandard modules for Schur superalgebra S(2|2) in positive characteristic. Journal of Algebra and Its Applications, v. 17, n. 2, p. 1-28, 2018Tradução . . Disponível em: http://dx.doi.org/10.1142/s021949881850038x. Acesso em: 30 set. 2022.
    • APA

      Grichkov, A., & Marko, F. (2018). Description of costandard modules for Schur superalgebra S(2|2) in positive characteristic. Journal of Algebra and Its Applications, 17( 2), 1-28. doi:10.1142/s021949881850038x
    • NLM

      Grichkov A, Marko F. Description of costandard modules for Schur superalgebra S(2|2) in positive characteristic [Internet]. Journal of Algebra and Its Applications. 2018 ; 17( 2): 1-28.[citado 2022 set. 30 ] Available from: http://dx.doi.org/10.1142/s021949881850038x
    • Vancouver

      Grichkov A, Marko F. Description of costandard modules for Schur superalgebra S(2|2) in positive characteristic [Internet]. Journal of Algebra and Its Applications. 2018 ; 17( 2): 1-28.[citado 2022 set. 30 ] Available from: http://dx.doi.org/10.1142/s021949881850038x

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2022