Filtros : "Giblin, P J" Limpar

Filtros



Refine with date range


  • Source: Mathematical Proceedings Cambridge Philosophical Society. Unidade: ICMC

    Assunto: TOPOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRUCE, James William e GIBLIN, P J e TARI, Farid. Families of surfaces: focal sets, ridges and umbilics. Mathematical Proceedings Cambridge Philosophical Society, v. 125, p. 243-268, 1999Tradução . . Disponível em: https://doi.org/10.1017/s0305004198003004. Acesso em: 10 set. 2024.
    • APA

      Bruce, J. W., Giblin, P. J., & Tari, F. (1999). Families of surfaces: focal sets, ridges and umbilics. Mathematical Proceedings Cambridge Philosophical Society, 125, 243-268. doi:10.1017/s0305004198003004
    • NLM

      Bruce JW, Giblin PJ, Tari F. Families of surfaces: focal sets, ridges and umbilics [Internet]. Mathematical Proceedings Cambridge Philosophical Society. 1999 ;125 243-268.[citado 2024 set. 10 ] Available from: https://doi.org/10.1017/s0305004198003004
    • Vancouver

      Bruce JW, Giblin PJ, Tari F. Families of surfaces: focal sets, ridges and umbilics [Internet]. Mathematical Proceedings Cambridge Philosophical Society. 1999 ;125 243-268.[citado 2024 set. 10 ] Available from: https://doi.org/10.1017/s0305004198003004
  • Source: Mathematica Scandinavica. Unidade: ICMC

    Assunto: TOPOLOGIA-GEOMETRIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRUCE, J W e GIBLIN, P J e TARI, Farid. Families of surfaces: height functions and projections to planes. Mathematica Scandinavica, v. 82, p. 165-185, 1998Tradução . . Disponível em: https://doi.org/10.7146/math.scand.a-13831. Acesso em: 10 set. 2024.
    • APA

      Bruce, J. W., Giblin, P. J., & Tari, F. (1998). Families of surfaces: height functions and projections to planes. Mathematica Scandinavica, 82, 165-185. doi:10.7146/math.scand.a-13831
    • NLM

      Bruce JW, Giblin PJ, Tari F. Families of surfaces: height functions and projections to planes [Internet]. Mathematica Scandinavica. 1998 ; 82 165-185.[citado 2024 set. 10 ] Available from: https://doi.org/10.7146/math.scand.a-13831
    • Vancouver

      Bruce JW, Giblin PJ, Tari F. Families of surfaces: height functions and projections to planes [Internet]. Mathematica Scandinavica. 1998 ; 82 165-185.[citado 2024 set. 10 ] Available from: https://doi.org/10.7146/math.scand.a-13831
  • Unidade: ICMC

    Assunto: SINGULARIDADES

    Versão PublicadaHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRUCE, J W e GIBLIN, P J e TARI, Farid. Families of surfaces: focal sets, ridges and umbilics. . São Carlos: ICMSC-USP. Disponível em: https://repositorio.usp.br/directbitstream/e18abb80-0311-4eb6-9193-3735cf12ebe4/967825.pdf. Acesso em: 10 set. 2024. , 1997
    • APA

      Bruce, J. W., Giblin, P. J., & Tari, F. (1997). Families of surfaces: focal sets, ridges and umbilics. São Carlos: ICMSC-USP. Recuperado de https://repositorio.usp.br/directbitstream/e18abb80-0311-4eb6-9193-3735cf12ebe4/967825.pdf
    • NLM

      Bruce JW, Giblin PJ, Tari F. Families of surfaces: focal sets, ridges and umbilics [Internet]. 1997 ;[citado 2024 set. 10 ] Available from: https://repositorio.usp.br/directbitstream/e18abb80-0311-4eb6-9193-3735cf12ebe4/967825.pdf
    • Vancouver

      Bruce JW, Giblin PJ, Tari F. Families of surfaces: focal sets, ridges and umbilics [Internet]. 1997 ;[citado 2024 set. 10 ] Available from: https://repositorio.usp.br/directbitstream/e18abb80-0311-4eb6-9193-3735cf12ebe4/967825.pdf
  • Source: International Journal of Computer Vision. Unidade: ICMC

    Subjects: GEOMETRIA, SINGULARIDADES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRUCE, J W e GIBLIN, P J e TARI, Farid. Parabolic curves of evolving surfaces. International Journal of Computer Vision, v. 17, n. 3 , p. 291-306, 1996Tradução . . Disponível em: https://doi.org/10.1007/bf00128235. Acesso em: 10 set. 2024.
    • APA

      Bruce, J. W., Giblin, P. J., & Tari, F. (1996). Parabolic curves of evolving surfaces. International Journal of Computer Vision, 17( 3 ), 291-306. doi:10.1007/bf00128235
    • NLM

      Bruce JW, Giblin PJ, Tari F. Parabolic curves of evolving surfaces [Internet]. International Journal of Computer Vision. 1996 ;17( 3 ): 291-306.[citado 2024 set. 10 ] Available from: https://doi.org/10.1007/bf00128235
    • Vancouver

      Bruce JW, Giblin PJ, Tari F. Parabolic curves of evolving surfaces [Internet]. International Journal of Computer Vision. 1996 ;17( 3 ): 291-306.[citado 2024 set. 10 ] Available from: https://doi.org/10.1007/bf00128235
  • Source: International Journal of Computer Vision. Unidade: ICMC

    Subjects: GEOMETRIA, SINGULARIDADES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRUCE, J W e GIBLIN, P J e TARI, Farid. Ridges, crets an sub-parabolic lines of evolving surfaces. International Journal of Computer Vision, v. 18, n. 3 , p. 195-210, 1996Tradução . . Disponível em: https://doi.org/10.1007/bf00123141. Acesso em: 10 set. 2024.
    • APA

      Bruce, J. W., Giblin, P. J., & Tari, F. (1996). Ridges, crets an sub-parabolic lines of evolving surfaces. International Journal of Computer Vision, 18( 3 ), 195-210. doi:10.1007/bf00123141
    • NLM

      Bruce JW, Giblin PJ, Tari F. Ridges, crets an sub-parabolic lines of evolving surfaces [Internet]. International Journal of Computer Vision. 1996 ;18( 3 ): 195-210.[citado 2024 set. 10 ] Available from: https://doi.org/10.1007/bf00123141
    • Vancouver

      Bruce JW, Giblin PJ, Tari F. Ridges, crets an sub-parabolic lines of evolving surfaces [Internet]. International Journal of Computer Vision. 1996 ;18( 3 ): 195-210.[citado 2024 set. 10 ] Available from: https://doi.org/10.1007/bf00123141

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024