Filtros : "Zanatta, Antonio Ricardo" "2022" Limpar

Filtros



Refine with date range


  • Source: ACS Applied Nano Materials. Unidade: IFSC

    Subjects: SILICONE, FILMES FINOS, NANOPARTÍCULAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LEIDENS, Leonardo Mathias et al. Nanotribology of hydrogenated amorphous silicon: sliding- dependent friction and implications for nanoelectromechanical systems. ACS Applied Nano Materials, v. 5, n. 10, p. 15546-15556 + supporting information: S1-S7, 2022Tradução . . Disponível em: https://doi.org/10.1021/acsanm.2c03603. Acesso em: 02 nov. 2024.
    • APA

      Leidens, L. M., Michels, A. F., Perotti, B. L., Alvarez, F., Zanatta, A. R., & Figueroa, C. A. (2022). Nanotribology of hydrogenated amorphous silicon: sliding- dependent friction and implications for nanoelectromechanical systems. ACS Applied Nano Materials, 5( 10), 15546-15556 + supporting information: S1-S7. doi:10.1021/acsanm.2c03603
    • NLM

      Leidens LM, Michels AF, Perotti BL, Alvarez F, Zanatta AR, Figueroa CA. Nanotribology of hydrogenated amorphous silicon: sliding- dependent friction and implications for nanoelectromechanical systems [Internet]. ACS Applied Nano Materials. 2022 ; 5( 10): 15546-15556 + supporting information: S1-S7.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1021/acsanm.2c03603
    • Vancouver

      Leidens LM, Michels AF, Perotti BL, Alvarez F, Zanatta AR, Figueroa CA. Nanotribology of hydrogenated amorphous silicon: sliding- dependent friction and implications for nanoelectromechanical systems [Internet]. ACS Applied Nano Materials. 2022 ; 5( 10): 15546-15556 + supporting information: S1-S7.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1021/acsanm.2c03603
  • Source: Advanced Materials Interfaces. Unidade: IFSC

    Subjects: FILMES FINOS, MATERIAIS NANOESTRUTURADOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ECHEVERRIGARAY, Fernando Graniero et al. Heterophase interface and surface functionalization of TiOx/TiSix metastable nanofilms. Advanced Materials Interfaces, v. 9, n. 24, p. 2200799-1-2200799-14, 2022Tradução . . Disponível em: https://doi.org/10.1002/admi.202200799. Acesso em: 02 nov. 2024.
    • APA

      Echeverrigaray, F. G., Figueroa, C. A., Zanatta, A. R., & Alvarez, F. (2022). Heterophase interface and surface functionalization of TiOx/TiSix metastable nanofilms. Advanced Materials Interfaces, 9( 24), 2200799-1-2200799-14. doi:10.1002/admi.202200799
    • NLM

      Echeverrigaray FG, Figueroa CA, Zanatta AR, Alvarez F. Heterophase interface and surface functionalization of TiOx/TiSix metastable nanofilms [Internet]. Advanced Materials Interfaces. 2022 ; 9( 24): 2200799-1-2200799-14.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1002/admi.202200799
    • Vancouver

      Echeverrigaray FG, Figueroa CA, Zanatta AR, Alvarez F. Heterophase interface and surface functionalization of TiOx/TiSix metastable nanofilms [Internet]. Advanced Materials Interfaces. 2022 ; 9( 24): 2200799-1-2200799-14.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1002/admi.202200799
  • Source: Results in Optics. Unidade: IFSC

    Subjects: FILMES FINOS, SEMICONDUTORES, CÉLULAS SOLARES

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ZANATTA, Antonio Ricardo. The Shockley-Queisser limit and the conversion efficiency of silicon-based solar cells. Results in Optics, v. 9, p. 100320-1-100320-7, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.rio.2022.100320. Acesso em: 02 nov. 2024.
    • APA

      Zanatta, A. R. (2022). The Shockley-Queisser limit and the conversion efficiency of silicon-based solar cells. Results in Optics, 9, 100320-1-100320-7. doi:10.1016/j.rio.2022.100320
    • NLM

      Zanatta AR. The Shockley-Queisser limit and the conversion efficiency of silicon-based solar cells [Internet]. Results in Optics. 2022 ; 9 100320-1-100320-7.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1016/j.rio.2022.100320
    • Vancouver

      Zanatta AR. The Shockley-Queisser limit and the conversion efficiency of silicon-based solar cells [Internet]. Results in Optics. 2022 ; 9 100320-1-100320-7.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1016/j.rio.2022.100320
  • Source: Results in Physics. Unidade: IFSC

    Subjects: ÓPTICA NÃO LINEAR, FILMES FINOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ZANATTA, Antonio Ricardo. The optical bandgap of lithium niobate (LiNbO3) and its dependence with temperature. Results in Physics, v. 39, p. 105736-1-105736-3, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.rinp.2022.105736. Acesso em: 02 nov. 2024.
    • APA

      Zanatta, A. R. (2022). The optical bandgap of lithium niobate (LiNbO3) and its dependence with temperature. Results in Physics, 39, 105736-1-105736-3. doi:10.1016/j.rinp.2022.105736
    • NLM

      Zanatta AR. The optical bandgap of lithium niobate (LiNbO3) and its dependence with temperature [Internet]. Results in Physics. 2022 ; 39 105736-1-105736-3.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1016/j.rinp.2022.105736
    • Vancouver

      Zanatta AR. The optical bandgap of lithium niobate (LiNbO3) and its dependence with temperature [Internet]. Results in Physics. 2022 ; 39 105736-1-105736-3.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1016/j.rinp.2022.105736
  • Source: Journal of Non-Crystalline Solids. Unidade: IFSC

    Subjects: FILMES FINOS, TITÂNIO, ESPECTROSCOPIA RAMAN

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ZANATTA, Antonio Ricardo et al. Gradual and selective achievement of Rutile-TiO2 by thermal annealing amorphous TixOyNz films. Journal of Non-Crystalline Solids, v. 579, p. 121375-1-121375-7, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jnoncrysol.2021.121375. Acesso em: 02 nov. 2024.
    • APA

      Zanatta, A. R., Echeverrigaray, F. G., Cemin, F., & Alvarez, F. (2022). Gradual and selective achievement of Rutile-TiO2 by thermal annealing amorphous TixOyNz films. Journal of Non-Crystalline Solids, 579, 121375-1-121375-7. doi:10.1016/j.jnoncrysol.2021.121375
    • NLM

      Zanatta AR, Echeverrigaray FG, Cemin F, Alvarez F. Gradual and selective achievement of Rutile-TiO2 by thermal annealing amorphous TixOyNz films [Internet]. Journal of Non-Crystalline Solids. 2022 ; 579 121375-1-121375-7.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1016/j.jnoncrysol.2021.121375
    • Vancouver

      Zanatta AR, Echeverrigaray FG, Cemin F, Alvarez F. Gradual and selective achievement of Rutile-TiO2 by thermal annealing amorphous TixOyNz films [Internet]. Journal of Non-Crystalline Solids. 2022 ; 579 121375-1-121375-7.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1016/j.jnoncrysol.2021.121375

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024