Filtros : "Tarpani, José Ricardo" "ARTIGO DE PERIODICO" Removido: "Portela, Alexandre Machado Aguiar" Limpar

Filtros



Refine with date range


  • Source: Composite Interfaces. Unidades: IFSC, EESC

    Subjects: MATERIAIS, CELULOSE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRITO, Francisco Javier Goyo e SILVA, Marcelo de Assumpção Pereira da e TARPANI, José Ricardo. Enhancing the flexural properties of CFRP with vacuum-assisted deposition of cellulose microfibrils to create a multiscale reinforcement network. Composite Interfaces, v. 31, n. 2, p. 239-260, 2024Tradução . . Disponível em: https://doi.org/10.1080/09276440.2023.2248771. Acesso em: 03 ago. 2024.
    • APA

      Brito, F. J. G., Silva, M. de A. P. da, & Tarpani, J. R. (2024). Enhancing the flexural properties of CFRP with vacuum-assisted deposition of cellulose microfibrils to create a multiscale reinforcement network. Composite Interfaces, 31( 2), 239-260. doi:10.1080/09276440.2023.2248771
    • NLM

      Brito FJG, Silva M de AP da, Tarpani JR. Enhancing the flexural properties of CFRP with vacuum-assisted deposition of cellulose microfibrils to create a multiscale reinforcement network [Internet]. Composite Interfaces. 2024 ; 31( 2): 239-260.[citado 2024 ago. 03 ] Available from: https://doi.org/10.1080/09276440.2023.2248771
    • Vancouver

      Brito FJG, Silva M de AP da, Tarpani JR. Enhancing the flexural properties of CFRP with vacuum-assisted deposition of cellulose microfibrils to create a multiscale reinforcement network [Internet]. Composite Interfaces. 2024 ; 31( 2): 239-260.[citado 2024 ago. 03 ] Available from: https://doi.org/10.1080/09276440.2023.2248771
  • Source: Journal of Building Engineering. Unidades: EEL, EESC

    Subjects: MATERIAIS COMPÓSITOS DE FIBRAS, PAINÉIS SANDWICH, MATERIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTOS, Julio Cesar dos et al. Sandwich structures of aluminium skins and egg-box-shaped cores made with biobased foam and composites. Journal of Building Engineering, v. 88, p. 1-19, 2024Tradução . . Disponível em: https://dx.doi.org/10.1016/j.jobe.2024.109099. Acesso em: 03 ago. 2024.
    • APA

      Santos, J. C. dos, Silva, R. J. da, Oliveira, L. Á. de, Freire, R. T. S., Tarpani, J. R., Thomas, C., et al. (2024). Sandwich structures of aluminium skins and egg-box-shaped cores made with biobased foam and composites. Journal of Building Engineering, 88, 1-19. doi:10.1016/j.jobe.2024.109099
    • NLM

      Santos JC dos, Silva RJ da, Oliveira LÁ de, Freire RTS, Tarpani JR, Thomas C, Panzera TH, Scarpa F. Sandwich structures of aluminium skins and egg-box-shaped cores made with biobased foam and composites [Internet]. Journal of Building Engineering. 2024 ; 88 1-19.[citado 2024 ago. 03 ] Available from: https://dx.doi.org/10.1016/j.jobe.2024.109099
    • Vancouver

      Santos JC dos, Silva RJ da, Oliveira LÁ de, Freire RTS, Tarpani JR, Thomas C, Panzera TH, Scarpa F. Sandwich structures of aluminium skins and egg-box-shaped cores made with biobased foam and composites [Internet]. Journal of Building Engineering. 2024 ; 88 1-19.[citado 2024 ago. 03 ] Available from: https://dx.doi.org/10.1016/j.jobe.2024.109099
  • Source: Composite Interfaces. Unidade: EESC

    Subjects: MATERIAIS COMPÓSITOS DE FIBRAS, POLÍMEROS (MATERIAIS), MATERIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SOUZA, Gustavo de e TARPANI, José Ricardo. Spraycoating of nanocellulose fibrilated (CNF) onto glass fiber and carbon fiber fabrics and its role as hierarchical reinforcement on GFRP and CFRP composites. Composite Interfaces, v. 29, n. 2, p. 121-140, 2022Tradução . . Disponível em: https://doi.org/10.1080/09276440.2021.1910420. Acesso em: 03 ago. 2024.
    • APA

      Souza, G. de, & Tarpani, J. R. (2022). Spraycoating of nanocellulose fibrilated (CNF) onto glass fiber and carbon fiber fabrics and its role as hierarchical reinforcement on GFRP and CFRP composites. Composite Interfaces, 29( 2), 121-140. doi:10.1080/09276440.2021.1910420
    • NLM

      Souza G de, Tarpani JR. Spraycoating of nanocellulose fibrilated (CNF) onto glass fiber and carbon fiber fabrics and its role as hierarchical reinforcement on GFRP and CFRP composites [Internet]. Composite Interfaces. 2022 ; 29( 2): 121-140.[citado 2024 ago. 03 ] Available from: https://doi.org/10.1080/09276440.2021.1910420
    • Vancouver

      Souza G de, Tarpani JR. Spraycoating of nanocellulose fibrilated (CNF) onto glass fiber and carbon fiber fabrics and its role as hierarchical reinforcement on GFRP and CFRP composites [Internet]. Composite Interfaces. 2022 ; 29( 2): 121-140.[citado 2024 ago. 03 ] Available from: https://doi.org/10.1080/09276440.2021.1910420
  • Source: Polymers. Unidade: EESC

    Subjects: FILMES FINOS, SENSOR, MATERIAIS COMPÓSITOS, MATERIAIS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TITA, Sandra Patrícia da Silva et al. Flexible composite films made of EMAA−Na+ ionomer: evaluation of the influence of piezoelectric particles on the thermal and mechanical properties. Polymers, v. 14, n. 13, p. 1-23, 2022Tradução . . Disponível em: https://doi.org/10.3390/polym14132755. Acesso em: 03 ago. 2024.
    • APA

      Tita, S. P. da S., Magalhães, F. D., Paiva, D., Bertochi, M. A. Z., Teixeira, G. F., Pires, A. L., et al. (2022). Flexible composite films made of EMAA−Na+ ionomer: evaluation of the influence of piezoelectric particles on the thermal and mechanical properties. Polymers, 14( 13), 1-23. doi:10.3390/polym14132755
    • NLM

      Tita SP da S, Magalhães FD, Paiva D, Bertochi MAZ, Teixeira GF, Pires AL, Pereira AM, Tarpani JR. Flexible composite films made of EMAA−Na+ ionomer: evaluation of the influence of piezoelectric particles on the thermal and mechanical properties [Internet]. Polymers. 2022 ; 14( 13): 1-23.[citado 2024 ago. 03 ] Available from: https://doi.org/10.3390/polym14132755
    • Vancouver

      Tita SP da S, Magalhães FD, Paiva D, Bertochi MAZ, Teixeira GF, Pires AL, Pereira AM, Tarpani JR. Flexible composite films made of EMAA−Na+ ionomer: evaluation of the influence of piezoelectric particles on the thermal and mechanical properties [Internet]. Polymers. 2022 ; 14( 13): 1-23.[citado 2024 ago. 03 ] Available from: https://doi.org/10.3390/polym14132755
  • Source: Mechanics of Advanced Materials and Structures. Unidade: EESC

    Subjects: MATERIAIS COMPÓSITOS, FADIGA DOS MATERIAIS, CISALHAMENTO, MATERIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TONATTO, Maikson Luiz Passaia e TARPANI, José Ricardo e AMICO, Sandro Campos. Short-beam shear fatigue behavior of round curved pultruded composite. Mechanics of Advanced Materials and Structures, v. 29, n. 26, p. 5579-5587, 2022Tradução . . Disponível em: https://doi.org/10.1080/15376494.2021.1959968. Acesso em: 03 ago. 2024.
    • APA

      Tonatto, M. L. P., Tarpani, J. R., & Amico, S. C. (2022). Short-beam shear fatigue behavior of round curved pultruded composite. Mechanics of Advanced Materials and Structures, 29( 26), 5579-5587. doi:10.1080/15376494.2021.1959968
    • NLM

      Tonatto MLP, Tarpani JR, Amico SC. Short-beam shear fatigue behavior of round curved pultruded composite [Internet]. Mechanics of Advanced Materials and Structures. 2022 ; 29( 26): 5579-5587.[citado 2024 ago. 03 ] Available from: https://doi.org/10.1080/15376494.2021.1959968
    • Vancouver

      Tonatto MLP, Tarpani JR, Amico SC. Short-beam shear fatigue behavior of round curved pultruded composite [Internet]. Mechanics of Advanced Materials and Structures. 2022 ; 29( 26): 5579-5587.[citado 2024 ago. 03 ] Available from: https://doi.org/10.1080/15376494.2021.1959968
  • Source: Materials. Unidades: IFSC, EESC

    Subjects: RESSONÂNCIA MAGNÉTICA, POLÍMEROS (MATERIAIS)

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALVES, Carine Lourenço et al. Detection and imaging of damages and defects in fibre-reinforced composites by magnetic resonance technique. Materials, v. Fe 2021, n. 4, p. 977-1-977-22, 2021Tradução . . Disponível em: https://doi.org/10.3390/ma14040977. Acesso em: 03 ago. 2024.
    • APA

      Alves, C. L., Oliveira, J. S., Tannus, A., Tarpani, A. C. S. P., & Tarpani, J. R. (2021). Detection and imaging of damages and defects in fibre-reinforced composites by magnetic resonance technique. Materials, Fe 2021( 4), 977-1-977-22. doi:10.3390/ma14040977
    • NLM

      Alves CL, Oliveira JS, Tannus A, Tarpani ACSP, Tarpani JR. Detection and imaging of damages and defects in fibre-reinforced composites by magnetic resonance technique [Internet]. Materials. 2021 ; Fe 2021( 4): 977-1-977-22.[citado 2024 ago. 03 ] Available from: https://doi.org/10.3390/ma14040977
    • Vancouver

      Alves CL, Oliveira JS, Tannus A, Tarpani ACSP, Tarpani JR. Detection and imaging of damages and defects in fibre-reinforced composites by magnetic resonance technique [Internet]. Materials. 2021 ; Fe 2021( 4): 977-1-977-22.[citado 2024 ago. 03 ] Available from: https://doi.org/10.3390/ma14040977
  • Source: Materials Today: Proceedings. Unidade: EESC

    Subjects: POLÍMEROS (MATERIAIS), MATERIAIS NANOESTRUTURADOS

    PrivadoHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      URIBE, Braian Esneider Buitrago e SOARES-POZZI, Alessandra C e TARPANI, José Ricardo. Nanocellulose-coated carbon fibers towards developing hierarchical polymer matrix composites. Materials Today: Proceedings, v. 8, p. 820-831, 2019Tradução . . Disponível em: https://repositorio.usp.br/directbitstream/81497d75-464d-4e47-abdc-f7aae9ea5771/prod_022889_sysno_3005403.pdf. Acesso em: 03 ago. 2024.
    • APA

      Uribe, B. E. B., Soares-Pozzi, A. C., & Tarpani, J. R. (2019). Nanocellulose-coated carbon fibers towards developing hierarchical polymer matrix composites. Materials Today: Proceedings, 8, 820-831. Recuperado de https://repositorio.usp.br/directbitstream/81497d75-464d-4e47-abdc-f7aae9ea5771/prod_022889_sysno_3005403.pdf
    • NLM

      Uribe BEB, Soares-Pozzi AC, Tarpani JR. Nanocellulose-coated carbon fibers towards developing hierarchical polymer matrix composites [Internet]. Materials Today: Proceedings. 2019 ; 8 820-831.[citado 2024 ago. 03 ] Available from: https://repositorio.usp.br/directbitstream/81497d75-464d-4e47-abdc-f7aae9ea5771/prod_022889_sysno_3005403.pdf
    • Vancouver

      Uribe BEB, Soares-Pozzi AC, Tarpani JR. Nanocellulose-coated carbon fibers towards developing hierarchical polymer matrix composites [Internet]. Materials Today: Proceedings. 2019 ; 8 820-831.[citado 2024 ago. 03 ] Available from: https://repositorio.usp.br/directbitstream/81497d75-464d-4e47-abdc-f7aae9ea5771/prod_022889_sysno_3005403.pdf
  • Source: Journal of Composite Materials. Unidades: IQSC, EESC

    Subjects: TRATAMENTO DE SUPERFÍCIES, FIBRAS VEGETAIS, COMPOSTOS FENÓLICOS

    PrivadoAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TITA, Sandra Patrícia da Silva et al. Chemical modification of sugarcane bagasse and sisal fibers using hydroxymethylated lignin: Influence on impact strength and water absorption of phenolic composites. Journal of Composite Materials, v. 52, n. 20, p. 2743-2753, 2018Tradução . . Disponível em: http://journals.sagepub.com/doi/full/10.1177/0021998317753886. Acesso em: 03 ago. 2024.
    • APA

      Tita, S. P. da S., Medeiros, R., Tarpani, J. R., Frollini, E., & Tita, V. (2018). Chemical modification of sugarcane bagasse and sisal fibers using hydroxymethylated lignin: Influence on impact strength and water absorption of phenolic composites. Journal of Composite Materials, 52( 20), 2743-2753. doi:10.1177/0021998317753886
    • NLM

      Tita SP da S, Medeiros R, Tarpani JR, Frollini E, Tita V. Chemical modification of sugarcane bagasse and sisal fibers using hydroxymethylated lignin: Influence on impact strength and water absorption of phenolic composites [Internet]. Journal of Composite Materials. 2018 ;52( 20): 2743-2753.[citado 2024 ago. 03 ] Available from: http://journals.sagepub.com/doi/full/10.1177/0021998317753886
    • Vancouver

      Tita SP da S, Medeiros R, Tarpani JR, Frollini E, Tita V. Chemical modification of sugarcane bagasse and sisal fibers using hydroxymethylated lignin: Influence on impact strength and water absorption of phenolic composites [Internet]. Journal of Composite Materials. 2018 ;52( 20): 2743-2753.[citado 2024 ago. 03 ] Available from: http://journals.sagepub.com/doi/full/10.1177/0021998317753886
  • Source: Materials and Design. Unidade: EESC

    Subjects: MATERIAIS NANOESTRUTURADOS, MATERIAIS COMPÓSITOS POLIMÉRICOS, MATERIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BUITRAGO URIBE, Braian Esneider et al. TEMPO-oxidized cellulose nanofibers as interfacial strengthener in continuous-fiber reinforced polymer composites. Materials and Design, v. No 2017, p. 340-348, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.matdes.2017.08.004. Acesso em: 03 ago. 2024.
    • APA

      Buitrago Uribe, B. E., Chiromito, E. M. S., Carvalho, A. J. F. de, Arenal, R., & Tarpani, J. R. (2017). TEMPO-oxidized cellulose nanofibers as interfacial strengthener in continuous-fiber reinforced polymer composites. Materials and Design, No 2017, 340-348. doi:10.1016/j.matdes.2017.08.004
    • NLM

      Buitrago Uribe BE, Chiromito EMS, Carvalho AJF de, Arenal R, Tarpani JR. TEMPO-oxidized cellulose nanofibers as interfacial strengthener in continuous-fiber reinforced polymer composites [Internet]. Materials and Design. 2017 ; No 2017 340-348.[citado 2024 ago. 03 ] Available from: https://doi.org/10.1016/j.matdes.2017.08.004
    • Vancouver

      Buitrago Uribe BE, Chiromito EMS, Carvalho AJF de, Arenal R, Tarpani JR. TEMPO-oxidized cellulose nanofibers as interfacial strengthener in continuous-fiber reinforced polymer composites [Internet]. Materials and Design. 2017 ; No 2017 340-348.[citado 2024 ago. 03 ] Available from: https://doi.org/10.1016/j.matdes.2017.08.004
  • Source: Express Polymer Letters. Unidade: EESC

    Subjects: POLÍMEROS (MATERIAIS), NANOCOMPOSITOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      URIBE, Braian Esneider Buitrago et al. Low-cost, environmentally friendly route for producing CFRP laminates with microfibrillated cellulose interphase. Express Polymer Letters, v. 11, n. 1, p. 47-59, 2017Tradução . . Disponível em: https://doi.org/10.3144/expresspolymlett.2017.6. Acesso em: 03 ago. 2024.
    • APA

      Uribe, B. E. B., Chiromito, E. M. S., Carvalho, A. J. F., & Tarpani, J. R. (2017). Low-cost, environmentally friendly route for producing CFRP laminates with microfibrillated cellulose interphase. Express Polymer Letters, 11( 1), 47-59. doi:10.3144/expresspolymlett.2017.6
    • NLM

      Uribe BEB, Chiromito EMS, Carvalho AJF, Tarpani JR. Low-cost, environmentally friendly route for producing CFRP laminates with microfibrillated cellulose interphase [Internet]. Express Polymer Letters. 2017 ; 11( 1): 47-59.[citado 2024 ago. 03 ] Available from: https://doi.org/10.3144/expresspolymlett.2017.6
    • Vancouver

      Uribe BEB, Chiromito EMS, Carvalho AJF, Tarpani JR. Low-cost, environmentally friendly route for producing CFRP laminates with microfibrillated cellulose interphase [Internet]. Express Polymer Letters. 2017 ; 11( 1): 47-59.[citado 2024 ago. 03 ] Available from: https://doi.org/10.3144/expresspolymlett.2017.6
  • Source: Composite Interfaces (Online). Unidade: EESC

    Subjects: MICROSCOPIA, CELULOSE, POLÍMEROS (MATERIAIS)

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      URIBE, Braian Esneider Buitrago e TARPANI, José Ricardo. Interphase analysis of hierarchical composites via transmission electron microscopy. Composite Interfaces (Online), v. 24, n. 9, p. 849-859, 2017Tradução . . Disponível em: https://doi.org/10.1080/09276440.2017.1299428. Acesso em: 03 ago. 2024.
    • APA

      Uribe, B. E. B., & Tarpani, J. R. (2017). Interphase analysis of hierarchical composites via transmission electron microscopy. Composite Interfaces (Online), 24( 9), 849-859. doi:10.1080/09276440.2017.1299428
    • NLM

      Uribe BEB, Tarpani JR. Interphase analysis of hierarchical composites via transmission electron microscopy [Internet]. Composite Interfaces (Online). 2017 ; 24( 9): 849-859.[citado 2024 ago. 03 ] Available from: https://doi.org/10.1080/09276440.2017.1299428
    • Vancouver

      Uribe BEB, Tarpani JR. Interphase analysis of hierarchical composites via transmission electron microscopy [Internet]. Composite Interfaces (Online). 2017 ; 24( 9): 849-859.[citado 2024 ago. 03 ] Available from: https://doi.org/10.1080/09276440.2017.1299428
  • Source: Journal of Energy and Power Engineering. Unidade: EESC

    Subjects: POLÍMEROS (MATERIAIS), TERMOPLÁSTICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MORIOKA, Karen Saori e TARPANI, José Ricardo. Assessment of self-healing efficacy of thermoplastic ionomer films interleaving carbon-fibre reinforced epoxy matrix laminates. Journal of Energy and Power Engineering, v. 11, p. 345-354, 2017Tradução . . Disponível em: https://doi.org/10.17265/1934-8975/2017.05.007. Acesso em: 03 ago. 2024.
    • APA

      Morioka, K. S., & Tarpani, J. R. (2017). Assessment of self-healing efficacy of thermoplastic ionomer films interleaving carbon-fibre reinforced epoxy matrix laminates. Journal of Energy and Power Engineering, 11, 345-354. doi:10.17265/1934-8975/2017.05.007
    • NLM

      Morioka KS, Tarpani JR. Assessment of self-healing efficacy of thermoplastic ionomer films interleaving carbon-fibre reinforced epoxy matrix laminates [Internet]. Journal of Energy and Power Engineering. 2017 ; 11 345-354.[citado 2024 ago. 03 ] Available from: https://doi.org/10.17265/1934-8975/2017.05.007
    • Vancouver

      Morioka KS, Tarpani JR. Assessment of self-healing efficacy of thermoplastic ionomer films interleaving carbon-fibre reinforced epoxy matrix laminates [Internet]. Journal of Energy and Power Engineering. 2017 ; 11 345-354.[citado 2024 ago. 03 ] Available from: https://doi.org/10.17265/1934-8975/2017.05.007
  • Source: Materials & Design. Unidade: EESC

    Subjects: POLÍMEROS (MATERIAIS), CARBONO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Laís Vasconcelos da et al. Ageing effect on the tensile behavior of pultruded CFRP rods. Materials & Design, v. no 2016, p. 245-254, 2016Tradução . . Disponível em: https://doi.org/10.1016/j.matdes.2016.07.139. Acesso em: 03 ago. 2024.
    • APA

      Silva, L. V. da, Silva, F. W. da, Tarpani, J. R., Forte, M. M. de C., & Amico, S. C. (2016). Ageing effect on the tensile behavior of pultruded CFRP rods. Materials & Design, no 2016, 245-254. doi:10.1016/j.matdes.2016.07.139
    • NLM

      Silva LV da, Silva FW da, Tarpani JR, Forte MM de C, Amico SC. Ageing effect on the tensile behavior of pultruded CFRP rods [Internet]. Materials & Design. 2016 ; no 2016 245-254.[citado 2024 ago. 03 ] Available from: https://doi.org/10.1016/j.matdes.2016.07.139
    • Vancouver

      Silva LV da, Silva FW da, Tarpani JR, Forte MM de C, Amico SC. Ageing effect on the tensile behavior of pultruded CFRP rods [Internet]. Materials & Design. 2016 ; no 2016 245-254.[citado 2024 ago. 03 ] Available from: https://doi.org/10.1016/j.matdes.2016.07.139
  • Source: Proceedings of SPIE. Unidade: EESC

    Subjects: ENSAIOS NÃO DESTRUTIVOS, TERMOGRAFIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERNANDES, Henrique C. et al. Infrared thermography for CFRP inspection: computational model and experimental results. Proceedings of SPIE, 2016Tradução . . Disponível em: https://doi.org/10.1117/12.2223782. Acesso em: 03 ago. 2024.
    • APA

      Fernandes, H. C., Zhang, H., Morioka, K. S., Ibarra-Castanedo, C., López, F., Maldague, X. P. V., & Tarpani, J. R. (2016). Infrared thermography for CFRP inspection: computational model and experimental results. Proceedings of SPIE. doi:10.1117/12.2223782
    • NLM

      Fernandes HC, Zhang H, Morioka KS, Ibarra-Castanedo C, López F, Maldague XPV, Tarpani JR. Infrared thermography for CFRP inspection: computational model and experimental results [Internet]. Proceedings of SPIE. 2016 ;[citado 2024 ago. 03 ] Available from: https://doi.org/10.1117/12.2223782
    • Vancouver

      Fernandes HC, Zhang H, Morioka KS, Ibarra-Castanedo C, López F, Maldague XPV, Tarpani JR. Infrared thermography for CFRP inspection: computational model and experimental results [Internet]. Proceedings of SPIE. 2016 ;[citado 2024 ago. 03 ] Available from: https://doi.org/10.1117/12.2223782
  • Source: Journal of Applied Polymer Science. Unidade: EESC

    Subjects: MATERIAIS NANOESTRUTURADOS, CELULOSE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      URIBE, Braian Esneider Buitrago e CARVALHO, Antonio Jose Felix e TARPANI, José Ricardo. Low-cost, environmentally friendly route to produce glass fiber-reinforced polymer composites with microfibrillated cellulose interphase. Journal of Applied Polymer Science, v. 133, n. 46, 2016Tradução . . Disponível em: https://doi.org/10.1002/app.44183. Acesso em: 03 ago. 2024.
    • APA

      Uribe, B. E. B., Carvalho, A. J. F., & Tarpani, J. R. (2016). Low-cost, environmentally friendly route to produce glass fiber-reinforced polymer composites with microfibrillated cellulose interphase. Journal of Applied Polymer Science, 133( 46). doi:10.1002/app.44183
    • NLM

      Uribe BEB, Carvalho AJF, Tarpani JR. Low-cost, environmentally friendly route to produce glass fiber-reinforced polymer composites with microfibrillated cellulose interphase [Internet]. Journal of Applied Polymer Science. 2016 ; 133( 46):[citado 2024 ago. 03 ] Available from: https://doi.org/10.1002/app.44183
    • Vancouver

      Uribe BEB, Carvalho AJF, Tarpani JR. Low-cost, environmentally friendly route to produce glass fiber-reinforced polymer composites with microfibrillated cellulose interphase [Internet]. Journal of Applied Polymer Science. 2016 ; 133( 46):[citado 2024 ago. 03 ] Available from: https://doi.org/10.1002/app.44183
  • Source: Materials Performance and Characterization. Unidade: EESC

    Subjects: LIGAS METÁLICAS, SOLDAGEM POR FRICÇÃO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MILAN, M T e BOSE FILHO, Waldek Wladimir e TARPANI, José Ricardo. Fatigue crack growth behavior of friction stir welded 2024-T3 aluminum alloy tested under accelerated salt fog exposure. Materials Performance and Characterization, v. 3, n. 3, p. se 2014, 2014Tradução . . Disponível em: https://doi.org/10.1520/MPC20130036. Acesso em: 03 ago. 2024.
    • APA

      Milan, M. T., Bose Filho, W. W., & Tarpani, J. R. (2014). Fatigue crack growth behavior of friction stir welded 2024-T3 aluminum alloy tested under accelerated salt fog exposure. Materials Performance and Characterization, 3( 3), se 2014. doi:10.1520/MPC20130036
    • NLM

      Milan MT, Bose Filho WW, Tarpani JR. Fatigue crack growth behavior of friction stir welded 2024-T3 aluminum alloy tested under accelerated salt fog exposure [Internet]. Materials Performance and Characterization. 2014 ; 3( 3): se 2014.[citado 2024 ago. 03 ] Available from: https://doi.org/10.1520/MPC20130036
    • Vancouver

      Milan MT, Bose Filho WW, Tarpani JR. Fatigue crack growth behavior of friction stir welded 2024-T3 aluminum alloy tested under accelerated salt fog exposure [Internet]. Materials Performance and Characterization. 2014 ; 3( 3): se 2014.[citado 2024 ago. 03 ] Available from: https://doi.org/10.1520/MPC20130036
  • Source: Materials Research. Unidade: EESC

    Subjects: FALHA, FADIGA DOS MATERIAIS, LIGAS LEVES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ROSSINO, Luciana Sgarbi et al. Surface contact fatigue failure of a case hardened pinion shaft. Materials Research, v. 17, n. 3, p. 535-541, 2014Tradução . . Disponível em: https://doi.org/10.1590/S1516-14392014005000063. Acesso em: 03 ago. 2024.
    • APA

      Rossino, L. S., Castro, D. B. V. de, Moreto, J. A., Ruchert, C. O. F. T., Spinelli, D., & Tarpani, J. R. (2014). Surface contact fatigue failure of a case hardened pinion shaft. Materials Research, 17( 3), 535-541. doi:10.1590/S1516-14392014005000063
    • NLM

      Rossino LS, Castro DBV de, Moreto JA, Ruchert COFT, Spinelli D, Tarpani JR. Surface contact fatigue failure of a case hardened pinion shaft [Internet]. Materials Research. 2014 ; 17( 3): 535-541.[citado 2024 ago. 03 ] Available from: https://doi.org/10.1590/S1516-14392014005000063
    • Vancouver

      Rossino LS, Castro DBV de, Moreto JA, Ruchert COFT, Spinelli D, Tarpani JR. Surface contact fatigue failure of a case hardened pinion shaft [Internet]. Materials Research. 2014 ; 17( 3): 535-541.[citado 2024 ago. 03 ] Available from: https://doi.org/10.1590/S1516-14392014005000063
  • Source: Procedia Materials Science. Unidades: EP, EESC

    Subjects: TERMOPLÁSTICOS, FRATURA DAS ESTRUTURAS, GASODUTOS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PERES, Fabiano Moreno e TARPANI, José Ricardo e SCHÖN, Cláudio Geraldo. Essential work of fracture testing method applied to medium density polyethylene. Procedia Materials Science, v. 3, p. 756-763, 2014Tradução . . Disponível em: https://doi.org/10.1016/j.mspro.2014.06.124. Acesso em: 03 ago. 2024.
    • APA

      Peres, F. M., Tarpani, J. R., & Schön, C. G. (2014). Essential work of fracture testing method applied to medium density polyethylene. Procedia Materials Science, 3, 756-763. doi:10.1016/j.mspro.2014.06.124
    • NLM

      Peres FM, Tarpani JR, Schön CG. Essential work of fracture testing method applied to medium density polyethylene [Internet]. Procedia Materials Science. 2014 ;3 756-763.[citado 2024 ago. 03 ] Available from: https://doi.org/10.1016/j.mspro.2014.06.124
    • Vancouver

      Peres FM, Tarpani JR, Schön CG. Essential work of fracture testing method applied to medium density polyethylene [Internet]. Procedia Materials Science. 2014 ;3 756-763.[citado 2024 ago. 03 ] Available from: https://doi.org/10.1016/j.mspro.2014.06.124
  • Source: European Journal of Physics. Unidade: EESC

    Subjects: TERMOGRAFIA, ENSAIOS NÃO DESTRUTIVOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      IBARRA-CASTANEDO, Clemente e TARPANI, José Ricardo e MALDAGUE, Xavier P. V. Nondestructive testing with thermography. European Journal of Physics, v. 34, n. 6, p. S91-S109, 2013Tradução . . Disponível em: https://doi.org/10.1088/0143-0807/34/6/S91. Acesso em: 03 ago. 2024.
    • APA

      Ibarra-Castanedo, C., Tarpani, J. R., & Maldague, X. P. V. (2013). Nondestructive testing with thermography. European Journal of Physics, 34( 6), S91-S109. doi:10.1088/0143-0807/34/6/S91
    • NLM

      Ibarra-Castanedo C, Tarpani JR, Maldague XPV. Nondestructive testing with thermography [Internet]. European Journal of Physics. 2013 ; 34( 6): S91-S109.[citado 2024 ago. 03 ] Available from: https://doi.org/10.1088/0143-0807/34/6/S91
    • Vancouver

      Ibarra-Castanedo C, Tarpani JR, Maldague XPV. Nondestructive testing with thermography [Internet]. European Journal of Physics. 2013 ; 34( 6): S91-S109.[citado 2024 ago. 03 ] Available from: https://doi.org/10.1088/0143-0807/34/6/S91
  • Source: Journal of Aerospace Technology and Management. Unidade: EESC

    Subjects: TERMOPLÁSTICOS, SOLDAGEM, AERONAVES, JUNTAS ESTRUTURAIS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COSTA, Anahi Pereira da et al. A review of welding technologies for thermoplastic composites in aerospace applications. Journal of Aerospace Technology and Management, v. 4, n. 3, p. 255-265, 2012Tradução . . Disponível em: https://doi.org/10.5028/jatm.2012.04033912. Acesso em: 03 ago. 2024.
    • APA

      Costa, A. P. da, Botelho, E. C., Costa, M. L., Narita, N. E., & Tarpani, J. R. (2012). A review of welding technologies for thermoplastic composites in aerospace applications. Journal of Aerospace Technology and Management, 4( 3), 255-265. doi:10.5028/jatm.2012.04033912
    • NLM

      Costa AP da, Botelho EC, Costa ML, Narita NE, Tarpani JR. A review of welding technologies for thermoplastic composites in aerospace applications [Internet]. Journal of Aerospace Technology and Management. 2012 ; 4( 3): 255-265.[citado 2024 ago. 03 ] Available from: https://doi.org/10.5028/jatm.2012.04033912
    • Vancouver

      Costa AP da, Botelho EC, Costa ML, Narita NE, Tarpani JR. A review of welding technologies for thermoplastic composites in aerospace applications [Internet]. Journal of Aerospace Technology and Management. 2012 ; 4( 3): 255-265.[citado 2024 ago. 03 ] Available from: https://doi.org/10.5028/jatm.2012.04033912

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024