Filtros : "Rödl, Vojtěch" Limpar

Filtros



Refine with date range


  • Source: Proceedings of the London Mathematical Society. Unidade: IME

    Subjects: TEORIA DOS NÚMEROS, COMBINATÓRIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DELLAMONICA, Domingos et al. The number of Bh-sets of a given cardinality. Proceedings of the London Mathematical Society, v. 116, n. 3, p. 629-669, 2018Tradução . . Disponível em: https://doi.org/10.1112/plms.12082. Acesso em: 31 out. 2024.
    • APA

      Dellamonica, D., Kohayakawa, Y., Lee, S. J., Rödl, V., & Samotij, W. (2018). The number of Bh-sets of a given cardinality. Proceedings of the London Mathematical Society, 116( 3), 629-669. doi:10.1112/plms.12082
    • NLM

      Dellamonica D, Kohayakawa Y, Lee SJ, Rödl V, Samotij W. The number of Bh-sets of a given cardinality [Internet]. Proceedings of the London Mathematical Society. 2018 ; 116( 3): 629-669.[citado 2024 out. 31 ] Available from: https://doi.org/10.1112/plms.12082
    • Vancouver

      Dellamonica D, Kohayakawa Y, Lee SJ, Rödl V, Samotij W. The number of Bh-sets of a given cardinality [Internet]. Proceedings of the London Mathematical Society. 2018 ; 116( 3): 629-669.[citado 2024 out. 31 ] Available from: https://doi.org/10.1112/plms.12082
  • Source: SIAM Journal on Discrete Mathematics. Unidade: IME

    Assunto: TEORIA DOS NÚMEROS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KOHAYAKAWA, Yoshiharu et al. Infinite Sidon sets contained in sparse random sets of integers. SIAM Journal on Discrete Mathematics, v. 32, n. 1, p. 410-449, 2018Tradução . . Disponível em: https://doi.org/10.1137/17M1114934. Acesso em: 31 out. 2024.
    • APA

      Kohayakawa, Y., Lee, S. J., Moreira, C. G., & Rödl, V. (2018). Infinite Sidon sets contained in sparse random sets of integers. SIAM Journal on Discrete Mathematics, 32( 1), 410-449. doi:10.1137/17M1114934
    • NLM

      Kohayakawa Y, Lee SJ, Moreira CG, Rödl V. Infinite Sidon sets contained in sparse random sets of integers [Internet]. SIAM Journal on Discrete Mathematics. 2018 ; 32( 1): 410-449.[citado 2024 out. 31 ] Available from: https://doi.org/10.1137/17M1114934
    • Vancouver

      Kohayakawa Y, Lee SJ, Moreira CG, Rödl V. Infinite Sidon sets contained in sparse random sets of integers [Internet]. SIAM Journal on Discrete Mathematics. 2018 ; 32( 1): 410-449.[citado 2024 out. 31 ] Available from: https://doi.org/10.1137/17M1114934
  • Source: Journal of Combinatorial Theory, Series A. Unidade: IME

    Subjects: ANÁLISE HARMÔNICA, SÉRIES, COMBINATÓRIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DELLAMONICA JUNIOR, Domingos et al. The number of B3-sets of a given cardinality. Journal of Combinatorial Theory, Series A, v. 142, p. 44-76, 2016Tradução . . Disponível em: https://doi.org/10.1016/j.jcta.2016.03.004. Acesso em: 31 out. 2024.
    • APA

      Dellamonica Junior, D., Kohayakawa, Y., Lee, S. J., Rödl, V., & Samotij, W. (2016). The number of B3-sets of a given cardinality. Journal of Combinatorial Theory, Series A, 142, 44-76. doi:10.1016/j.jcta.2016.03.004
    • NLM

      Dellamonica Junior D, Kohayakawa Y, Lee SJ, Rödl V, Samotij W. The number of B3-sets of a given cardinality [Internet]. Journal of Combinatorial Theory, Series A. 2016 ; 142 44-76.[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.jcta.2016.03.004
    • Vancouver

      Dellamonica Junior D, Kohayakawa Y, Lee SJ, Rödl V, Samotij W. The number of B3-sets of a given cardinality [Internet]. Journal of Combinatorial Theory, Series A. 2016 ; 142 44-76.[citado 2024 out. 31 ] Available from: https://doi.org/10.1016/j.jcta.2016.03.004
  • Source: Czechoslovak Mathematical Journal. Unidade: IME

    Subjects: ÁLGEBRA LINEAR, GRAFOS ALEATÓRIOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KOHAYAKAWA, Yoshiharu e RÖDL, Vojtěch e SCHACHT, Mathias. Discrepancy and eigenvalues of Cayley graphs. Czechoslovak Mathematical Journal, v. 66, n. 3, p. 941-954-954, 2016Tradução . . Disponível em: https://doi.org/10.1007/s10587-016-0302-x. Acesso em: 31 out. 2024.
    • APA

      Kohayakawa, Y., Rödl, V., & Schacht, M. (2016). Discrepancy and eigenvalues of Cayley graphs. Czechoslovak Mathematical Journal, 66( 3), 941-954-954. doi:10.1007/s10587-016-0302-x
    • NLM

      Kohayakawa Y, Rödl V, Schacht M. Discrepancy and eigenvalues of Cayley graphs [Internet]. Czechoslovak Mathematical Journal. 2016 ; 66( 3): 941-954-954.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s10587-016-0302-x
    • Vancouver

      Kohayakawa Y, Rödl V, Schacht M. Discrepancy and eigenvalues of Cayley graphs [Internet]. Czechoslovak Mathematical Journal. 2016 ; 66( 3): 941-954-954.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s10587-016-0302-x
  • Source: Proceedings. Conference titles: ACM-SIAM Symposium on Discrete Algorithms - SODA. Unidade: IME

    Assunto: TEORIA DOS GRAFOS

    PrivadoAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KOHAYAKAWA, Yoshiharu e RÖDL, Vojtěch e THOMA, Luboš. An optimal algorithm for checking regularity: (extended abstract). 2002, Anais.. Philadelphia: SIAM, 2002. Disponível em: https://dl.acm.org/doi/pdf/10.5555/545381.545418. Acesso em: 31 out. 2024.
    • APA

      Kohayakawa, Y., Rödl, V., & Thoma, L. (2002). An optimal algorithm for checking regularity: (extended abstract). In Proceedings. Philadelphia: SIAM. Recuperado de https://dl.acm.org/doi/pdf/10.5555/545381.545418
    • NLM

      Kohayakawa Y, Rödl V, Thoma L. An optimal algorithm for checking regularity: (extended abstract) [Internet]. Proceedings. 2002 ;[citado 2024 out. 31 ] Available from: https://dl.acm.org/doi/pdf/10.5555/545381.545418
    • Vancouver

      Kohayakawa Y, Rödl V, Thoma L. An optimal algorithm for checking regularity: (extended abstract) [Internet]. Proceedings. 2002 ;[citado 2024 out. 31 ] Available from: https://dl.acm.org/doi/pdf/10.5555/545381.545418

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024