Filtros : "Quiles, Marcos Gonçalves" "MUCELINI, JOHNATAN" Removido: "Congresso Brasileiro de Computação" Limpar

Filtros



Refine with date range


  • Source: Journal of Chemical Information and Modeling. Unidade: IQSC

    Subjects: QUÍMICA QUÂNTICA, MINERAÇÃO DE DADOS, FRAMEWORKS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MUCELINI, Johnatan et al. Correlation-based framework for extraction of insights from quantum chemistry databases: Applications for nanoclusters. Journal of Chemical Information and Modeling, v. 61, p. 1125-1135, 2021Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.0c01267. Acesso em: 01 nov. 2024.
    • APA

      Mucelini, J., Quiles, M. G., Prati, R. C., & Silva, J. L. F. da. (2021). Correlation-based framework for extraction of insights from quantum chemistry databases: Applications for nanoclusters. Journal of Chemical Information and Modeling, 61, 1125-1135. doi:10.1021/acs.jcim.0c01267
    • NLM

      Mucelini J, Quiles MG, Prati RC, Silva JLF da. Correlation-based framework for extraction of insights from quantum chemistry databases: Applications for nanoclusters [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61 1125-1135.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1021/acs.jcim.0c01267
    • Vancouver

      Mucelini J, Quiles MG, Prati RC, Silva JLF da. Correlation-based framework for extraction of insights from quantum chemistry databases: Applications for nanoclusters [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61 1125-1135.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1021/acs.jcim.0c01267
  • Source: The Journal of Physical Chemistry C. Unidade: IQSC

    Subjects: CATALISADORES, NANOPARTÍCULAS

    PrivadoAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MENDES, Paulo de Carvalho Dias et al. Ab initio insights into the formation mechanisms of 55-atom Pt- based core−Shell Nanoalloys. The Journal of Physical Chemistry C, v. 124, n. 1, p. 1158-1164, 2020Tradução . . Disponível em: https://doi.org/10.1021/acs.jpcc.9b09561. Acesso em: 01 nov. 2024.
    • APA

      Mendes, P. de C. D., Justo, S. G., Mucelini, J., Soares, M. D., Batista, K. E. de A., Quiles, M. G., et al. (2020). Ab initio insights into the formation mechanisms of 55-atom Pt- based core−Shell Nanoalloys. The Journal of Physical Chemistry C, 124( 1), 1158-1164. doi:10.1021/acs.jpcc.9b09561
    • NLM

      Mendes P de CD, Justo SG, Mucelini J, Soares MD, Batista KE de A, Quiles MG, Piotrowski MJ, Silva JLF da. Ab initio insights into the formation mechanisms of 55-atom Pt- based core−Shell Nanoalloys [Internet]. The Journal of Physical Chemistry C. 2020 ; 124( 1): 1158-1164.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1021/acs.jpcc.9b09561
    • Vancouver

      Mendes P de CD, Justo SG, Mucelini J, Soares MD, Batista KE de A, Quiles MG, Piotrowski MJ, Silva JLF da. Ab initio insights into the formation mechanisms of 55-atom Pt- based core−Shell Nanoalloys [Internet]. The Journal of Physical Chemistry C. 2020 ; 124( 1): 1158-1164.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1021/acs.jpcc.9b09561
  • Source: Journal of Physical Chemistry A. Unidades: IQSC, ICMC

    Assunto: QUÍMICA QUÂNTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PINHEIRO, Gabriel A. et al. Machine Learning Prediction of Nine Molecular Properties Based on the SMILES Representation of the QM9 Quantum-Chemistry Dataset. Journal of Physical Chemistry A, v. No 2020, n. 47, p. 9854–9866, 2020Tradução . . Disponível em: https://doi.org/10.1021/acs.jpca.0c05969. Acesso em: 01 nov. 2024.
    • APA

      Pinheiro, G. A., Mucelini, J., Soares, M. D., Prati, R. C., Silva, J. L. F. da, & Quiles, M. G. (2020). Machine Learning Prediction of Nine Molecular Properties Based on the SMILES Representation of the QM9 Quantum-Chemistry Dataset. Journal of Physical Chemistry A, No 2020( 47), 9854–9866. doi:10.1021/acs.jpca.0c05969
    • NLM

      Pinheiro GA, Mucelini J, Soares MD, Prati RC, Silva JLF da, Quiles MG. Machine Learning Prediction of Nine Molecular Properties Based on the SMILES Representation of the QM9 Quantum-Chemistry Dataset [Internet]. Journal of Physical Chemistry A. 2020 ; No 2020( 47): 9854–9866.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1021/acs.jpca.0c05969
    • Vancouver

      Pinheiro GA, Mucelini J, Soares MD, Prati RC, Silva JLF da, Quiles MG. Machine Learning Prediction of Nine Molecular Properties Based on the SMILES Representation of the QM9 Quantum-Chemistry Dataset [Internet]. Journal of Physical Chemistry A. 2020 ; No 2020( 47): 9854–9866.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1021/acs.jpca.0c05969

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024