Filtros : "Lamare, Rodrigo C" "Nascimento, Vítor Heloiz" Removidos: "DOADORES DE SANGUE" "2Instituto de Medicina Tropical, USP" Limpar

Filtros



Refine with date range


  • Source: IEEE Transactions on Signal Processing. Unidade: EP

    Subjects: PROCESSAMENTO DE SINAIS, INTERNET DAS COISAS, CONTROLE ADAPTATIVO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DANAEE, Alireza e LAMARE, Rodrigo C e NASCIMENTO, Vítor Heloiz. Distributed quantization-aware RLS learning with bias compensation and coarsely quantized signals. IEEE Transactions on Signal Processing, v. 70, p. 3441-3455, 2022Tradução . . Disponível em: https://doi.org/10.1109/TSP.2022.3185898. Acesso em: 01 nov. 2024.
    • APA

      Danaee, A., Lamare, R. C., & Nascimento, V. H. (2022). Distributed quantization-aware RLS learning with bias compensation and coarsely quantized signals. IEEE Transactions on Signal Processing, 70, 3441-3455. doi:10.1109/TSP.2022.3185898
    • NLM

      Danaee A, Lamare RC, Nascimento VH. Distributed quantization-aware RLS learning with bias compensation and coarsely quantized signals. [Internet]. IEEE Transactions on Signal Processing. 2022 ; 70 3441-3455.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1109/TSP.2022.3185898
    • Vancouver

      Danaee A, Lamare RC, Nascimento VH. Distributed quantization-aware RLS learning with bias compensation and coarsely quantized signals. [Internet]. IEEE Transactions on Signal Processing. 2022 ; 70 3441-3455.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1109/TSP.2022.3185898
  • Source: ICASSP. Conference titles: IEEE International Conference on Acoustics, Speech and Signal Processing. Unidade: EP

    Subjects: FEIXES, REDES NEURAIS, MATRIZES, PROCESSAMENTO DE SINAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOHAMMADZADEH, Saeed et al. Robust adaptive beamforming bases on power method processing and spatial spectrum matching. 2022, Anais.. Piscataway: IEEE, 2022. Disponível em: http://www.doi.org/10.1109/ICASSP43922.2022.9747915. Acesso em: 01 nov. 2024.
    • APA

      Mohammadzadeh, S., Nascimento, V. H., Lamare, R. C., & Kukrer, O. (2022). Robust adaptive beamforming bases on power method processing and spatial spectrum matching. In ICASSP. Piscataway: IEEE. doi:10.1109/ICASSP43922.2022.9747915
    • NLM

      Mohammadzadeh S, Nascimento VH, Lamare RC, Kukrer O. Robust adaptive beamforming bases on power method processing and spatial spectrum matching [Internet]. ICASSP. 2022 ;[citado 2024 nov. 01 ] Available from: http://www.doi.org/10.1109/ICASSP43922.2022.9747915
    • Vancouver

      Mohammadzadeh S, Nascimento VH, Lamare RC, Kukrer O. Robust adaptive beamforming bases on power method processing and spatial spectrum matching [Internet]. ICASSP. 2022 ;[citado 2024 nov. 01 ] Available from: http://www.doi.org/10.1109/ICASSP43922.2022.9747915
  • Source: IEEE Signal Processing Letters. Unidade: EP

    Subjects: INTELIGÊNCIA ARTIFICIAL, REDES NEURAIS, PROCESSAMENTO DE SINAIS

    PrivadoAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOHAMMADZADEH, Saeed et al. Robust beamforming based on complex-valued convolutional neural networks for sensor arrays. IEEE Signal Processing Letters, v. 29, p. 2108-2112, 2022Tradução . . Disponível em: https://doi.org/10.1109/LSP.2022.3212637. Acesso em: 01 nov. 2024.
    • APA

      Mohammadzadeh, S., Nascimento, V. H., Lamare, R. C., & Hajarolasvadi, N. (2022). Robust beamforming based on complex-valued convolutional neural networks for sensor arrays. IEEE Signal Processing Letters, 29, 2108-2112. doi:10.1109/LSP.2022.3212637
    • NLM

      Mohammadzadeh S, Nascimento VH, Lamare RC, Hajarolasvadi N. Robust beamforming based on complex-valued convolutional neural networks for sensor arrays [Internet]. IEEE Signal Processing Letters. 2022 ;29 2108-2112.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1109/LSP.2022.3212637
    • Vancouver

      Mohammadzadeh S, Nascimento VH, Lamare RC, Hajarolasvadi N. Robust beamforming based on complex-valued convolutional neural networks for sensor arrays [Internet]. IEEE Signal Processing Letters. 2022 ;29 2108-2112.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1109/LSP.2022.3212637
  • Source: IEEE Signal Processing Letters. Unidade: EP

    Subjects: APRENDIZAGEM, PROCESSAMENTO DE SINAIS, ALGORITMOS

    Versão PublicadaAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DANAEE, Alireza e LAMARE, Rodrigo C e NASCIMENTO, Vítor Heloiz. Energy-efficient distributed learning with coarsely quantized signals. IEEE Signal Processing Letters, v. 28, p. 329-333, 2021Tradução . . Disponível em: https://doi.org/10.1109/LSP.2021.3051522. Acesso em: 01 nov. 2024.
    • APA

      Danaee, A., Lamare, R. C., & Nascimento, V. H. (2021). Energy-efficient distributed learning with coarsely quantized signals. IEEE Signal Processing Letters, 28, 329-333. doi:10.1109/LSP.2021.3051522
    • NLM

      Danaee A, Lamare RC, Nascimento VH. Energy-efficient distributed learning with coarsely quantized signals [Internet]. IEEE Signal Processing Letters. 2021 ; 28 329-333.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1109/LSP.2021.3051522
    • Vancouver

      Danaee A, Lamare RC, Nascimento VH. Energy-efficient distributed learning with coarsely quantized signals [Internet]. IEEE Signal Processing Letters. 2021 ; 28 329-333.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1109/LSP.2021.3051522
  • Source: IEEE Access. Unidade: EP

    Subjects: PROCESSAMENTO DE SINAIS, TRANSFORMADA DE FOURIER

    Versão PublicadaAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOHAMMADZADEH, Saeed et al. Robust adaptive beamforming based on low-complexity discrete Fourier transform spatial sampling. IEEE Access, v. 9, p. 84845-84856, 2021Tradução . . Disponível em: https://doi.org/10.1109/ACCESS.2021.3088747. Acesso em: 01 nov. 2024.
    • APA

      Mohammadzadeh, S., Lamare, R. C., Kukrer, O., & Nascimento, V. H. (2021). Robust adaptive beamforming based on low-complexity discrete Fourier transform spatial sampling. IEEE Access, 9, 84845-84856. doi:10.1109/ACCESS.2021.3088747
    • NLM

      Mohammadzadeh S, Lamare RC, Kukrer O, Nascimento VH. Robust adaptive beamforming based on low-complexity discrete Fourier transform spatial sampling [Internet]. IEEE Access. 2021 ; 9 84845-84856.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1109/ACCESS.2021.3088747
    • Vancouver

      Mohammadzadeh S, Lamare RC, Kukrer O, Nascimento VH. Robust adaptive beamforming based on low-complexity discrete Fourier transform spatial sampling [Internet]. IEEE Access. 2021 ; 9 84845-84856.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1109/ACCESS.2021.3088747
  • Source: IEEE Signal Processing Letters. Unidade: EP

    Subjects: PROCESSAMENTO DE SINAIS, RECONSTRUÇÃO DE SINAIS

    PrivadoAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOHAMMADZADEH, Saeed et al. Maximum entropy-based interference-plus-noise covariance matrix reconstruction for robust adaptive beamforming. IEEE Signal Processing Letters, v. 27, p. 845-849, 2020Tradução . . Disponível em: https://doi.org/10.1109/LSP.2020.2994527. Acesso em: 01 nov. 2024.
    • APA

      Mohammadzadeh, S., Nascimento, V. H., Lamare, R. C., & Kukrer, O. (2020). Maximum entropy-based interference-plus-noise covariance matrix reconstruction for robust adaptive beamforming. IEEE Signal Processing Letters, 27, 845-849. doi:10.1109/LSP.2020.2994527
    • NLM

      Mohammadzadeh S, Nascimento VH, Lamare RC, Kukrer O. Maximum entropy-based interference-plus-noise covariance matrix reconstruction for robust adaptive beamforming [Internet]. IEEE Signal Processing Letters. 2020 ; 27 845-849.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1109/LSP.2020.2994527
    • Vancouver

      Mohammadzadeh S, Nascimento VH, Lamare RC, Kukrer O. Maximum entropy-based interference-plus-noise covariance matrix reconstruction for robust adaptive beamforming [Internet]. IEEE Signal Processing Letters. 2020 ; 27 845-849.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1109/LSP.2020.2994527
  • Source: IEEE Transactions on Aerospace and Electronic Systems. Unidade: EP

    Subjects: PROCESSAMENTO DE SINAIS, COMPLEXIDADE, MÉTODOS ITERATIVOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALMEIDA NETO, Fernando Gonçalves de et al. Adaptive reweighting homotopy algorithms applied to beamforming. IEEE Transactions on Aerospace and Electronic Systems, v. 51, n. 3, p. 1902-1915, 2015Tradução . . Disponível em: https://doi.org/10.1109/taes.2015.140401. Acesso em: 01 nov. 2024.
    • APA

      Almeida Neto, F. G. de, Lamare, R. C., Nascimento, V. H., & Zakharov, Y. V. (2015). Adaptive reweighting homotopy algorithms applied to beamforming. IEEE Transactions on Aerospace and Electronic Systems, 51( 3), 1902-1915. doi:10.1109/taes.2015.140401
    • NLM

      Almeida Neto FG de, Lamare RC, Nascimento VH, Zakharov YV. Adaptive reweighting homotopy algorithms applied to beamforming [Internet]. IEEE Transactions on Aerospace and Electronic Systems. 2015 ; 51( 3): 1902-1915.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1109/taes.2015.140401
    • Vancouver

      Almeida Neto FG de, Lamare RC, Nascimento VH, Zakharov YV. Adaptive reweighting homotopy algorithms applied to beamforming [Internet]. IEEE Transactions on Aerospace and Electronic Systems. 2015 ; 51( 3): 1902-1915.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1109/taes.2015.140401

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024