Filtros : "Kolanthai, Elayaraja" Removido: "FM" Limpar

Filtros



Refine with date range


  • Source: Ceramics International. Unidade: IQ

    Subjects: NANOPARTÍCULAS, COBALTO, FOSFATOS, CÁLCIO, MAGNETISMO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SRINIVASAN, Baskar et al. Enhanced in vitro inhibition of MCF-7 and magnetic properties of cobalt incorporated calcium phosphate (HAp and β-TCP) nanoparticles. Ceramics International, v. 49, n. 1, p. 855-861, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.ceramint.2022.09.058. Acesso em: 03 nov. 2024.
    • APA

      Srinivasan, B., Kolanthai, E., Nivethaa, E. A. K., Pandian, M. S., Ramasamy, P., Catalani, L. H., & Kalkura, S. N. (2023). Enhanced in vitro inhibition of MCF-7 and magnetic properties of cobalt incorporated calcium phosphate (HAp and β-TCP) nanoparticles. Ceramics International, 49( 1), 855-861. doi:10.1016/j.ceramint.2022.09.058
    • NLM

      Srinivasan B, Kolanthai E, Nivethaa EAK, Pandian MS, Ramasamy P, Catalani LH, Kalkura SN. Enhanced in vitro inhibition of MCF-7 and magnetic properties of cobalt incorporated calcium phosphate (HAp and β-TCP) nanoparticles [Internet]. Ceramics International. 2023 ; 49( 1): 855-861.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1016/j.ceramint.2022.09.058
    • Vancouver

      Srinivasan B, Kolanthai E, Nivethaa EAK, Pandian MS, Ramasamy P, Catalani LH, Kalkura SN. Enhanced in vitro inhibition of MCF-7 and magnetic properties of cobalt incorporated calcium phosphate (HAp and β-TCP) nanoparticles [Internet]. Ceramics International. 2023 ; 49( 1): 855-861.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1016/j.ceramint.2022.09.058
  • Source: ACS Applied Bio Materials. Unidade: IQ

    Subjects: FLUORESCÊNCIA, NANOPARTÍCULAS, ÍONS, BIOMATERIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SRINIVASAN, Baskar et al. Vacancy induced visible light driven fluorescence in toxic ion-free resorbable magnetic calcium Phosphates for cell imaging applications. ACS Applied Bio Materials, v. 4, n. 4, p. 3256–3263, 2021Tradução . . Disponível em: https://doi.org/10.1021/acsabm.0c01617. Acesso em: 03 nov. 2024.
    • APA

      Srinivasan, B., Kolanthai, E., Kumaraswamy, N. E. A., Pugazhendhi, A. S., Catalani, L. H., & Subbaraya, N. K. (2021). Vacancy induced visible light driven fluorescence in toxic ion-free resorbable magnetic calcium Phosphates for cell imaging applications. ACS Applied Bio Materials, 4( 4), 3256–3263. doi:10.1021/acsabm.0c01617
    • NLM

      Srinivasan B, Kolanthai E, Kumaraswamy NEA, Pugazhendhi AS, Catalani LH, Subbaraya NK. Vacancy induced visible light driven fluorescence in toxic ion-free resorbable magnetic calcium Phosphates for cell imaging applications [Internet]. ACS Applied Bio Materials. 2021 ; 4( 4): 3256–3263.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1021/acsabm.0c01617
    • Vancouver

      Srinivasan B, Kolanthai E, Kumaraswamy NEA, Pugazhendhi AS, Catalani LH, Subbaraya NK. Vacancy induced visible light driven fluorescence in toxic ion-free resorbable magnetic calcium Phosphates for cell imaging applications [Internet]. ACS Applied Bio Materials. 2021 ; 4( 4): 3256–3263.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1021/acsabm.0c01617
  • Source: Materials Advances. Unidade: IQ

    Subjects: PROTEÍNAS, ENGENHARIA TECIDUAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DELECHIAVE, Giovanne et al. Tuning protein delivery from different architectures of layer-by-layer assemblies on polymer films. Materials Advances, v. 1, p. 2043-2056, 2020Tradução . . Disponível em: https://doi.org/10.1039/d0ma00432d. Acesso em: 03 nov. 2024.
    • APA

      Delechiave, G., Naves, A. F., Kolanthai, E., Silva, R. A. da, Vlasman, R. C., Petri, D. F. S., et al. (2020). Tuning protein delivery from different architectures of layer-by-layer assemblies on polymer films. Materials Advances, 1, 2043-2056. doi:10.1039/d0ma00432d
    • NLM

      Delechiave G, Naves AF, Kolanthai E, Silva RA da, Vlasman RC, Petri DFS, Torresi RM, Catalani LH. Tuning protein delivery from different architectures of layer-by-layer assemblies on polymer films [Internet]. Materials Advances. 2020 ; 1 2043-2056.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1039/d0ma00432d
    • Vancouver

      Delechiave G, Naves AF, Kolanthai E, Silva RA da, Vlasman RC, Petri DFS, Torresi RM, Catalani LH. Tuning protein delivery from different architectures of layer-by-layer assemblies on polymer films [Internet]. Materials Advances. 2020 ; 1 2043-2056.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1039/d0ma00432d
  • Source: Journal of Physical Chemistry B. Unidade: IQ

    Subjects: FOSFATOS, CÁLCIO, NANOPARTÍCULAS, HIPERTERMIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SRINIVASAN, Baskar et al. Thermally modified iron-inserted calcium phosphate for magnetic hyperthermia in an acceptable alternating magnetic field. Journal of Physical Chemistry B, v. 123, n. 26, p. 5506-5513, 2019Tradução . . Disponível em: https://doi.org/10.1021/acs.jpcb.9b03015. Acesso em: 03 nov. 2024.
    • APA

      Srinivasan, B., Kolanthai, E., Kumaraswamy, N. E. A., Jayapalan, R. R., Vavilapalli, D. S., Catalani, L. H., et al. (2019). Thermally modified iron-inserted calcium phosphate for magnetic hyperthermia in an acceptable alternating magnetic field. Journal of Physical Chemistry B, 123( 26), 5506-5513. doi:10.1021/acs.jpcb.9b03015
    • NLM

      Srinivasan B, Kolanthai E, Kumaraswamy NEA, Jayapalan RR, Vavilapalli DS, Catalani LH, Ningombam GS, Khundrakpam NS, Singh NR, Kalkura SN. Thermally modified iron-inserted calcium phosphate for magnetic hyperthermia in an acceptable alternating magnetic field [Internet]. Journal of Physical Chemistry B. 2019 ; 123( 26): 5506-5513.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1021/acs.jpcb.9b03015
    • Vancouver

      Srinivasan B, Kolanthai E, Kumaraswamy NEA, Jayapalan RR, Vavilapalli DS, Catalani LH, Ningombam GS, Khundrakpam NS, Singh NR, Kalkura SN. Thermally modified iron-inserted calcium phosphate for magnetic hyperthermia in an acceptable alternating magnetic field [Internet]. Journal of Physical Chemistry B. 2019 ; 123( 26): 5506-5513.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1021/acs.jpcb.9b03015
  • Source: ACS Applied Materials & Interfaces. Unidade: IQ

    Subjects: QUITOSANA, ALGINATOS, COLÁGENO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KOLANTHAI, Elayaraja et al. Graphene oxide-A tool for the preparation of chemically crosslinking free alginate−chitosan−collagen scaffolds for bone tissue engineering. ACS Applied Materials & Interfaces, v. 10, n. 15, p. 12441-12452, 2018Tradução . . Disponível em: https://doi.org/10.1021/acsami.8b00699. Acesso em: 03 nov. 2024.
    • APA

      Kolanthai, E., Sindu, P. A., Khajuria, D. K., Veerla, S. C., Kuppuswamy, D., Catalani, L. H., & Mahapatra, D. R. (2018). Graphene oxide-A tool for the preparation of chemically crosslinking free alginate−chitosan−collagen scaffolds for bone tissue engineering. ACS Applied Materials & Interfaces, 10( 15), 12441-12452. doi:10.1021/acsami.8b00699
    • NLM

      Kolanthai E, Sindu PA, Khajuria DK, Veerla SC, Kuppuswamy D, Catalani LH, Mahapatra DR. Graphene oxide-A tool for the preparation of chemically crosslinking free alginate−chitosan−collagen scaffolds for bone tissue engineering [Internet]. ACS Applied Materials & Interfaces. 2018 ; 10( 15): 12441-12452.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1021/acsami.8b00699
    • Vancouver

      Kolanthai E, Sindu PA, Khajuria DK, Veerla SC, Kuppuswamy D, Catalani LH, Mahapatra DR. Graphene oxide-A tool for the preparation of chemically crosslinking free alginate−chitosan−collagen scaffolds for bone tissue engineering [Internet]. ACS Applied Materials & Interfaces. 2018 ; 10( 15): 12441-12452.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1021/acsami.8b00699
  • Source: Proceedings. Conference titles: World Chemistry Congress. Unidade: IQ

    Subjects: PROTEÍNAS, BIOMATERIAIS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KOLANTHAI, Elayaraja e CATALANI, Luiz Henrique. Study of model proteins with graphene oxide self assembled on electrospun polycaprolactone fiber by layer-by-layer technique. 2017, Anais.. Durham: International Union of Pure and Applied Chemistry (IUPAC), 2017. Disponível em: http://www.neopixdmi.com.br/@mci/iupac2017/. Acesso em: 03 nov. 2024.
    • APA

      Kolanthai, E., & Catalani, L. H. (2017). Study of model proteins with graphene oxide self assembled on electrospun polycaprolactone fiber by layer-by-layer technique. In Proceedings. Durham: International Union of Pure and Applied Chemistry (IUPAC). Recuperado de http://www.neopixdmi.com.br/@mci/iupac2017/
    • NLM

      Kolanthai E, Catalani LH. Study of model proteins with graphene oxide self assembled on electrospun polycaprolactone fiber by layer-by-layer technique [Internet]. Proceedings. 2017 ;[citado 2024 nov. 03 ] Available from: http://www.neopixdmi.com.br/@mci/iupac2017/
    • Vancouver

      Kolanthai E, Catalani LH. Study of model proteins with graphene oxide self assembled on electrospun polycaprolactone fiber by layer-by-layer technique [Internet]. Proceedings. 2017 ;[citado 2024 nov. 03 ] Available from: http://www.neopixdmi.com.br/@mci/iupac2017/
  • Source: Journal of Photochemistry & Photobiology, B. Unidade: IQ

    Subjects: SILÍCIO, FLUORESCÊNCIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SINDU, P. Abinaya et al. Green synthesis of Si-incorporated hydroxyapatite using sodium metasilicate as silicon precursor and in vitro antibiotic release studies. Journal of Photochemistry & Photobiology, B, v. 175, p. 163-172, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.jphotobiol.2017.08.030. Acesso em: 03 nov. 2024.
    • APA

      Sindu, P. A., Kolanthai, E., Suganthi, R. V., Arul, K. T., Manikandan, E., Catalani, L. H., & Kalkura, S. N. (2017). Green synthesis of Si-incorporated hydroxyapatite using sodium metasilicate as silicon precursor and in vitro antibiotic release studies. Journal of Photochemistry & Photobiology, B, 175, 163-172. doi:10.1016/j.jphotobiol.2017.08.030
    • NLM

      Sindu PA, Kolanthai E, Suganthi RV, Arul KT, Manikandan E, Catalani LH, Kalkura SN. Green synthesis of Si-incorporated hydroxyapatite using sodium metasilicate as silicon precursor and in vitro antibiotic release studies [Internet]. Journal of Photochemistry & Photobiology, B. 2017 ; 175 163-172.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1016/j.jphotobiol.2017.08.030
    • Vancouver

      Sindu PA, Kolanthai E, Suganthi RV, Arul KT, Manikandan E, Catalani LH, Kalkura SN. Green synthesis of Si-incorporated hydroxyapatite using sodium metasilicate as silicon precursor and in vitro antibiotic release studies [Internet]. Journal of Photochemistry & Photobiology, B. 2017 ; 175 163-172.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1016/j.jphotobiol.2017.08.030

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024