Filtros : "Kashuba, Iryna" "Communications in Algebra" Removido: "Egito" Limpar

Filtros



Refine with date range


  • Source: Communications in Algebra. Unidade: IME

    Subjects: ÁLGEBRAS DE LIE, ANÉIS E ÁLGEBRAS COMUTATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HOŁUBOWSKI, Waldemar e KASHUBA, Iryna e ŻUREK, Sebastian. Derivations of the Lie algebra of infinite strictly upper triangular matrices over a commutative ring. Communications in Algebra, v. 45, n. 11, p. 4679-4685, 2017Tradução . . Disponível em: https://doi.org/10.1080/00927872.2016.1277388. Acesso em: 01 nov. 2024.
    • APA

      Hołubowski, W., Kashuba, I., & Żurek, S. (2017). Derivations of the Lie algebra of infinite strictly upper triangular matrices over a commutative ring. Communications in Algebra, 45( 11), 4679-4685. doi:10.1080/00927872.2016.1277388
    • NLM

      Hołubowski W, Kashuba I, Żurek S. Derivations of the Lie algebra of infinite strictly upper triangular matrices over a commutative ring [Internet]. Communications in Algebra. 2017 ; 45( 11): 4679-4685.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1080/00927872.2016.1277388
    • Vancouver

      Hołubowski W, Kashuba I, Żurek S. Derivations of the Lie algebra of infinite strictly upper triangular matrices over a commutative ring [Internet]. Communications in Algebra. 2017 ; 45( 11): 4679-4685.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1080/00927872.2016.1277388
  • Source: Communications in Algebra. Unidade: IME

    Subjects: ÁLGEBRAS DE LIE, GRUPOS QUÂNTICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KASHUBA, Iryna e MARTINS, Renato Alessandro. Free field realizations of induced modules for affine Lie algebras. Communications in Algebra, v. 42, n. 6, p. 2428-2441, 2014Tradução . . Disponível em: https://doi.org/10.1080/00927872.2012.758270. Acesso em: 01 nov. 2024.
    • APA

      Kashuba, I., & Martins, R. A. (2014). Free field realizations of induced modules for affine Lie algebras. Communications in Algebra, 42( 6), 2428-2441. doi:10.1080/00927872.2012.758270
    • NLM

      Kashuba I, Martins RA. Free field realizations of induced modules for affine Lie algebras [Internet]. Communications in Algebra. 2014 ; 42( 6): 2428-2441.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1080/00927872.2012.758270
    • Vancouver

      Kashuba I, Martins RA. Free field realizations of induced modules for affine Lie algebras [Internet]. Communications in Algebra. 2014 ; 42( 6): 2428-2441.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1080/00927872.2012.758270
  • Source: Communications in Algebra. Unidade: IME

    Assunto: ÁLGEBRAS DE LIE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e KASHUBA, Iryna. Verma type modules for toroidal Lie algebras. Communications in Algebra, v. 27, n. 8, p. 3979-3991, 1999Tradução . . Disponível em: https://doi.org/10.1080/00927879908826677. Acesso em: 01 nov. 2024.
    • APA

      Futorny, V., & Kashuba, I. (1999). Verma type modules for toroidal Lie algebras. Communications in Algebra, 27( 8), 3979-3991. doi:10.1080/00927879908826677
    • NLM

      Futorny V, Kashuba I. Verma type modules for toroidal Lie algebras [Internet]. Communications in Algebra. 1999 ; 27( 8): 3979-3991.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1080/00927879908826677
    • Vancouver

      Futorny V, Kashuba I. Verma type modules for toroidal Lie algebras [Internet]. Communications in Algebra. 1999 ; 27( 8): 3979-3991.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1080/00927879908826677

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024