Filtros : "Hertz, M. A. Rodriguez" Limpar

Filtros



Refine with date range


  • Source: Ergodic Theory and Dynamical Systems. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HERTZ, F. Rodriguez et al. Maximizing measures for partially hyperbolic systems with compact center leaves. Ergodic Theory and Dynamical Systems, v. 32, n. 2, p. 825-839, 2012Tradução . . Disponível em: https://doi.org/10.1017/S0143385711000757. Acesso em: 31 out. 2024.
    • APA

      Hertz, F. R., Hertz, M. A. R., Tahzibi, A., & Ures, R. (2012). Maximizing measures for partially hyperbolic systems with compact center leaves. Ergodic Theory and Dynamical Systems, 32( 2), 825-839. doi:10.1017/S0143385711000757
    • NLM

      Hertz FR, Hertz MAR, Tahzibi A, Ures R. Maximizing measures for partially hyperbolic systems with compact center leaves [Internet]. Ergodic Theory and Dynamical Systems. 2012 ; 32( 2): 825-839.[citado 2024 out. 31 ] Available from: https://doi.org/10.1017/S0143385711000757
    • Vancouver

      Hertz FR, Hertz MAR, Tahzibi A, Ures R. Maximizing measures for partially hyperbolic systems with compact center leaves [Internet]. Ergodic Theory and Dynamical Systems. 2012 ; 32( 2): 825-839.[citado 2024 out. 31 ] Available from: https://doi.org/10.1017/S0143385711000757
  • Source: Duke Mathematical Journal. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HERTZ, F. Rodriguez et al. New criteria for ergodicity and nonuniform hyperbolicity. Duke Mathematical Journal, v. 160, n. 3, p. 599-629, 2011Tradução . . Disponível em: https://doi.org/10.1215/00127094-1444314. Acesso em: 31 out. 2024.
    • APA

      Hertz, F. R., Hertz, M. A. R., Tahzibi, A., & Ures, R. (2011). New criteria for ergodicity and nonuniform hyperbolicity. Duke Mathematical Journal, 160( 3), 599-629. doi:10.1215/00127094-1444314
    • NLM

      Hertz FR, Hertz MAR, Tahzibi A, Ures R. New criteria for ergodicity and nonuniform hyperbolicity [Internet]. Duke Mathematical Journal. 2011 ; 160( 3): 599-629.[citado 2024 out. 31 ] Available from: https://doi.org/10.1215/00127094-1444314
    • Vancouver

      Hertz FR, Hertz MAR, Tahzibi A, Ures R. New criteria for ergodicity and nonuniform hyperbolicity [Internet]. Duke Mathematical Journal. 2011 ; 160( 3): 599-629.[citado 2024 out. 31 ] Available from: https://doi.org/10.1215/00127094-1444314
  • Source: Communications in Mathematical Physics. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HERTZ, Federico Rodriguez et al. Uniqueness of SRB measures for transitive diffeomorphisms on surfaces. Communications in Mathematical Physics, v. 306, n. 1, p. 35-49, 2011Tradução . . Disponível em: https://doi.org/10.1007/s00220-011-1275-0. Acesso em: 31 out. 2024.
    • APA

      Hertz, F. R., Hertz, M. A. R., Tahzibi, A., & Ures, R. (2011). Uniqueness of SRB measures for transitive diffeomorphisms on surfaces. Communications in Mathematical Physics, 306( 1), 35-49. doi:10.1007/s00220-011-1275-0
    • NLM

      Hertz FR, Hertz MAR, Tahzibi A, Ures R. Uniqueness of SRB measures for transitive diffeomorphisms on surfaces [Internet]. Communications in Mathematical Physics. 2011 ; 306( 1): 35-49.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s00220-011-1275-0
    • Vancouver

      Hertz FR, Hertz MAR, Tahzibi A, Ures R. Uniqueness of SRB measures for transitive diffeomorphisms on surfaces [Internet]. Communications in Mathematical Physics. 2011 ; 306( 1): 35-49.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s00220-011-1275-0
  • Source: Nonlinearity. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, SISTEMAS DINÂMICOS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HERTZ, Federico Rodriguez et al. Creation of blenders in the conservative setting. Nonlinearity, v. 23, n. 2, p. 211-223, 2010Tradução . . Disponível em: https://doi.org/10.1088/0951-7715/23/2/001. Acesso em: 31 out. 2024.
    • APA

      Hertz, F. R., Hertz, M. A. R., Tahzibi, A., & Ures, R. (2010). Creation of blenders in the conservative setting. Nonlinearity, 23( 2), 211-223. doi:10.1088/0951-7715/23/2/001
    • NLM

      Hertz FR, Hertz MAR, Tahzibi A, Ures R. Creation of blenders in the conservative setting [Internet]. Nonlinearity. 2010 ; 23( 2): 211-223.[citado 2024 out. 31 ] Available from: https://doi.org/10.1088/0951-7715/23/2/001
    • Vancouver

      Hertz FR, Hertz MAR, Tahzibi A, Ures R. Creation of blenders in the conservative setting [Internet]. Nonlinearity. 2010 ; 23( 2): 211-223.[citado 2024 out. 31 ] Available from: https://doi.org/10.1088/0951-7715/23/2/001
  • Source: Electronic Research Announcements in Mathematical Sciences. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, SISTEMAS DINÂMICOS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HERTZ, F. R. et al. A criterion for ergocicity of non-uniformly hyperbolic diffeomorphisms. Electronic Research Announcements in Mathematical Sciences, v. 14, p. 74-81, 2007Tradução . . Disponível em: http://www.aimsciences.org/journals/pdfs.do?paperID=2966&mode=full. Acesso em: 31 out. 2024.
    • APA

      Hertz, F. R., Hertz, M. A. R., Tahzibi, A., & Ures, R. (2007). A criterion for ergocicity of non-uniformly hyperbolic diffeomorphisms. Electronic Research Announcements in Mathematical Sciences, 14, 74-81. Recuperado de http://www.aimsciences.org/journals/pdfs.do?paperID=2966&mode=full
    • NLM

      Hertz FR, Hertz MAR, Tahzibi A, Ures R. A criterion for ergocicity of non-uniformly hyperbolic diffeomorphisms [Internet]. Electronic Research Announcements in Mathematical Sciences. 2007 ; 14 74-81.[citado 2024 out. 31 ] Available from: http://www.aimsciences.org/journals/pdfs.do?paperID=2966&mode=full
    • Vancouver

      Hertz FR, Hertz MAR, Tahzibi A, Ures R. A criterion for ergocicity of non-uniformly hyperbolic diffeomorphisms [Internet]. Electronic Research Announcements in Mathematical Sciences. 2007 ; 14 74-81.[citado 2024 out. 31 ] Available from: http://www.aimsciences.org/journals/pdfs.do?paperID=2966&mode=full

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024