Filtros : "Haigh, Sarah J" Removido: "OURO" Limpar

Filtros



Refine with date range


  • Source: Nanoscale. Unidade: IQ

    Subjects: CATALISADORES, ENERGIA SOLAR

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FREITAS, Isabel C. de et al. Design-controlled synthesis of IrO2 sub-monolayers on Au nanoflowers: marrying plasmonic and electrocatalytic properties. Nanoscale, v. 12, p. 12281–12291 art. 12281 : + Supplementary Materials ( S1-S23), 2020Tradução . . Disponível em: https://doi.org/10.1039/d0nr01875a. Acesso em: 03 nov. 2024.
    • APA

      Freitas, I. C. de, Parreira, L. S., Barbosa, E. C. M., Novaes, B. A., Mou, T., Alves, T. V., et al. (2020). Design-controlled synthesis of IrO2 sub-monolayers on Au nanoflowers: marrying plasmonic and electrocatalytic properties. Nanoscale, 12, 12281–12291 art. 12281 : + Supplementary Materials ( S1-S23). doi:10.1039/d0nr01875a
    • NLM

      Freitas IC de, Parreira LS, Barbosa ECM, Novaes BA, Mou T, Alves TV, Quiroz J, Wang Y-C, Slater TJ, Thomas A, Wang B, Haigh SJ, Camargo PHC de. Design-controlled synthesis of IrO2 sub-monolayers on Au nanoflowers: marrying plasmonic and electrocatalytic properties [Internet]. Nanoscale. 2020 ; 12 12281–12291 art. 12281 : + Supplementary Materials ( S1-S23).[citado 2024 nov. 03 ] Available from: https://doi.org/10.1039/d0nr01875a
    • Vancouver

      Freitas IC de, Parreira LS, Barbosa ECM, Novaes BA, Mou T, Alves TV, Quiroz J, Wang Y-C, Slater TJ, Thomas A, Wang B, Haigh SJ, Camargo PHC de. Design-controlled synthesis of IrO2 sub-monolayers on Au nanoflowers: marrying plasmonic and electrocatalytic properties [Internet]. Nanoscale. 2020 ; 12 12281–12291 art. 12281 : + Supplementary Materials ( S1-S23).[citado 2024 nov. 03 ] Available from: https://doi.org/10.1039/d0nr01875a
  • Source: Nano Letters. Unidade: IQ

    Subjects: HIDROGENAÇÃO, PLATINA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      QUIROZ, Jhon et al. Controlling reaction selectivity over hybrid plasmonic nanocatalysts. Nano Letters, v. 18, p. 7289-7297, 2018Tradução . . Disponível em: https://doi.org/10.1021/acs.nanolett.8b03499. Acesso em: 03 nov. 2024.
    • APA

      Quiroz, J., Barbosa, E. C. M., Araújo, T. P., Fiorio, J. L., Wang, Y. -C., Zou, Y. -C., et al. (2018). Controlling reaction selectivity over hybrid plasmonic nanocatalysts. Nano Letters, 18, 7289-7297. doi:10.1021/acs.nanolett.8b03499
    • NLM

      Quiroz J, Barbosa ECM, Araújo TP, Fiorio JL, Wang Y-C, Zou Y-C, Mou T, Alves TV, Oliveira DC de, Wang B, Haigh SJ, Rossi LM, Camargo PHC de. Controlling reaction selectivity over hybrid plasmonic nanocatalysts [Internet]. Nano Letters. 2018 ; 18 7289-7297.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1021/acs.nanolett.8b03499
    • Vancouver

      Quiroz J, Barbosa ECM, Araújo TP, Fiorio JL, Wang Y-C, Zou Y-C, Mou T, Alves TV, Oliveira DC de, Wang B, Haigh SJ, Rossi LM, Camargo PHC de. Controlling reaction selectivity over hybrid plasmonic nanocatalysts [Internet]. Nano Letters. 2018 ; 18 7289-7297.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1021/acs.nanolett.8b03499
  • Source: Chemical Communications. Unidade: IQ

    Subjects: NANOTECNOLOGIA, MATERIAIS NANOESTRUTURADOS, CATÁLISE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Anderson G. M. da et al. Galvanic replacement reaction: recent developments for engineering metal nanostructures towards catalytic applications. Chemical Communications, v. 53, p. 7135-7148, 2017Tradução . . Disponível em: https://doi.org/10.1039/c7cc02352a. Acesso em: 03 nov. 2024.
    • APA

      Silva, A. G. M. da, Rodrigues, T. S., Haigh, S. J., & Camargo, P. H. C. de. (2017). Galvanic replacement reaction: recent developments for engineering metal nanostructures towards catalytic applications. Chemical Communications, 53, 7135-7148. doi:10.1039/c7cc02352a
    • NLM

      Silva AGM da, Rodrigues TS, Haigh SJ, Camargo PHC de. Galvanic replacement reaction: recent developments for engineering metal nanostructures towards catalytic applications [Internet]. Chemical Communications. 2017 ; 53 7135-7148.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1039/c7cc02352a
    • Vancouver

      Silva AGM da, Rodrigues TS, Haigh SJ, Camargo PHC de. Galvanic replacement reaction: recent developments for engineering metal nanostructures towards catalytic applications [Internet]. Chemical Communications. 2017 ; 53 7135-7148.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1039/c7cc02352a
  • Source: Ultramicroscopy. Unidade: IQ

    Subjects: ESPECTROSCOPIA DE RAIO X, NANOPARTÍCULAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SLATER, Thomas J. A et al. STEM-EDX tomography of bimetallic nanoparticles: a methodological investigation. Ultramicroscopy, v. 162, p. 61-73, 2016Tradução . . Disponível em: https://doi.org/10.1016/j.ultramic.2015.10.007. Acesso em: 03 nov. 2024.
    • APA

      Slater, T. J. A., Janssen, A., Camargo, P. H. C. de, Burke, M. G., Zaluzec, N. J., & Haigh, S. J. (2016). STEM-EDX tomography of bimetallic nanoparticles: a methodological investigation. Ultramicroscopy, 162, 61-73. doi:10.1016/j.ultramic.2015.10.007
    • NLM

      Slater TJA, Janssen A, Camargo PHC de, Burke MG, Zaluzec NJ, Haigh SJ. STEM-EDX tomography of bimetallic nanoparticles: a methodological investigation [Internet]. Ultramicroscopy. 2016 ; 162 61-73.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1016/j.ultramic.2015.10.007
    • Vancouver

      Slater TJA, Janssen A, Camargo PHC de, Burke MG, Zaluzec NJ, Haigh SJ. STEM-EDX tomography of bimetallic nanoparticles: a methodological investigation [Internet]. Ultramicroscopy. 2016 ; 162 61-73.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1016/j.ultramic.2015.10.007
  • Source: ChemBanoMat. Unidade: IQ

    Subjects: NANOPARTÍCULAS, MATERIAIS NANOESTRUTURADOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      YAMADA, Liliam Kaori et al. Bimetallic Au@Pd-Au tadpole-shaped asymmetric nanostructures by a combination of precursor reduction and ostwald ripening. ChemBanoMat, v. 2, n. 6, p. 509-514, 2016Tradução . . Disponível em: https://doi.org/10.1002/cnma.2 01600049. Acesso em: 03 nov. 2024.
    • APA

      Yamada, L. K., Silva, A. G. M. da, Rodrigues, T. S., Haigh, S. J., & Camargo, P. H. C. de. (2016). Bimetallic Au@Pd-Au tadpole-shaped asymmetric nanostructures by a combination of precursor reduction and ostwald ripening. ChemBanoMat, 2( 6), 509-514. doi:10.1002/cnma.2 01600049
    • NLM

      Yamada LK, Silva AGM da, Rodrigues TS, Haigh SJ, Camargo PHC de. Bimetallic Au@Pd-Au tadpole-shaped asymmetric nanostructures by a combination of precursor reduction and ostwald ripening [Internet]. ChemBanoMat. 2016 ; 2( 6): 509-514.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1002/cnma.2 01600049
    • Vancouver

      Yamada LK, Silva AGM da, Rodrigues TS, Haigh SJ, Camargo PHC de. Bimetallic Au@Pd-Au tadpole-shaped asymmetric nanostructures by a combination of precursor reduction and ostwald ripening [Internet]. ChemBanoMat. 2016 ; 2( 6): 509-514.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1002/cnma.2 01600049
  • Source: Chemistry-A European Journal. Unidade: IQ

    Subjects: NANOPARTÍCULAS, NANOTECNOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Anderson Gabriel Marques da et al. Surface segregated 'AG''AU' tadpole-shaped nanoparticles synthesized via a single step combined galvanic and citrate reduction reaction. Chemistry-A European Journal, v. 21, n. 35, p. 12314-12320, 2015Tradução . . Disponível em: https://doi.org/10.1002/chem.201501704. Acesso em: 03 nov. 2024.
    • APA

      Silva, A. G. M. da, Lewis, E. A., Rodrigues, T. S., Slater, T. J. A., Alves, R. S., Haigh, S. J., & Camargo, P. H. C. de. (2015). Surface segregated 'AG''AU' tadpole-shaped nanoparticles synthesized via a single step combined galvanic and citrate reduction reaction. Chemistry-A European Journal, 21( 35), 12314-12320. doi:10.1002/chem.201501704
    • NLM

      Silva AGM da, Lewis EA, Rodrigues TS, Slater TJA, Alves RS, Haigh SJ, Camargo PHC de. Surface segregated 'AG''AU' tadpole-shaped nanoparticles synthesized via a single step combined galvanic and citrate reduction reaction [Internet]. Chemistry-A European Journal. 2015 ; 21( 35): 12314-12320.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1002/chem.201501704
    • Vancouver

      Silva AGM da, Lewis EA, Rodrigues TS, Slater TJA, Alves RS, Haigh SJ, Camargo PHC de. Surface segregated 'AG''AU' tadpole-shaped nanoparticles synthesized via a single step combined galvanic and citrate reduction reaction [Internet]. Chemistry-A European Journal. 2015 ; 21( 35): 12314-12320.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1002/chem.201501704
  • Source: European Journal of Inorganic Chemistry. Unidade: IQ

    Subjects: NANOPARTÍCULAS, PALÁDIO, ELETROCATÁLISE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARDOSO, Mariana B. T et al. A facile strategy to support palladium nanoparticles on carbon nanotubes, employing polyvinylpyrrolidone as a surface modifier. European Journal of Inorganic Chemistry, v. 2014, n. 9, p. 1439-1445, 2014Tradução . . Disponível em: https://doi.org/10.1002/ejic.201301585. Acesso em: 03 nov. 2024.
    • APA

      Cardoso, M. B. T., Lewis, E., Castro, P. S., Dantas, L. M. F., Oliveira, C. C. S. de, Bertotti, M., et al. (2014). A facile strategy to support palladium nanoparticles on carbon nanotubes, employing polyvinylpyrrolidone as a surface modifier. European Journal of Inorganic Chemistry, 2014( 9), 1439-1445. doi:10.1002/ejic.201301585
    • NLM

      Cardoso MBT, Lewis E, Castro PS, Dantas LMF, Oliveira CCS de, Bertotti M, Haigh SJ, Camargo PHC de. A facile strategy to support palladium nanoparticles on carbon nanotubes, employing polyvinylpyrrolidone as a surface modifier [Internet]. European Journal of Inorganic Chemistry. 2014 ; 2014( 9): 1439-1445.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1002/ejic.201301585
    • Vancouver

      Cardoso MBT, Lewis E, Castro PS, Dantas LMF, Oliveira CCS de, Bertotti M, Haigh SJ, Camargo PHC de. A facile strategy to support palladium nanoparticles on carbon nanotubes, employing polyvinylpyrrolidone as a surface modifier [Internet]. European Journal of Inorganic Chemistry. 2014 ; 2014( 9): 1439-1445.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1002/ejic.201301585
  • Source: Nano Letters. Unidade: IQ

    Subjects: NANOPARTÍCULAS, ESPECTROSCOPIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SLATER, Thomas J. A et al. Correlating catalytic activity of Ag−Au nanoparticles with 3D compositional variations. Nano Letters, v. 14, n. 4, p. 1921-1926, 2014Tradução . . Disponível em: https://doi.org/10.1021/nl4047448. Acesso em: 03 nov. 2024.
    • APA

      Slater, T. J. A., Macedo, A., Schroeder, S. L. M., Burke, M. G., O'Brien, P., Camargo, P. H. C. de, & Haigh, S. J. (2014). Correlating catalytic activity of Ag−Au nanoparticles with 3D compositional variations. Nano Letters, 14( 4), 1921-1926. doi:10.1021/nl4047448
    • NLM

      Slater TJA, Macedo A, Schroeder SLM, Burke MG, O'Brien P, Camargo PHC de, Haigh SJ. Correlating catalytic activity of Ag−Au nanoparticles with 3D compositional variations [Internet]. Nano Letters. 2014 ; 14( 4): 1921-1926.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1021/nl4047448
    • Vancouver

      Slater TJA, Macedo A, Schroeder SLM, Burke MG, O'Brien P, Camargo PHC de, Haigh SJ. Correlating catalytic activity of Ag−Au nanoparticles with 3D compositional variations [Internet]. Nano Letters. 2014 ; 14( 4): 1921-1926.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1021/nl4047448
  • Source: Nanoscale. Unidade: IQ

    Subjects: NANOPARTÍCULAS, NANOTECNOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LEWIS, E. A et al. Real-time imaging and elemental mapping of AgAu nanoparticle transformations. Nanoscale, v. 6, n. 22, p. 13598-13605, 2014Tradução . . Disponível em: https://doi.org/10.1039/c4nr04837g. Acesso em: 03 nov. 2024.
    • APA

      Lewis, E. A., Slater, T. J. A., Prestat, E., Macedo, A., O'Brien, P. O., Camargo, P. H. C. de, & Haigh, S. J. (2014). Real-time imaging and elemental mapping of AgAu nanoparticle transformations. Nanoscale, 6( 22), 13598-13605. doi:10.1039/c4nr04837g
    • NLM

      Lewis EA, Slater TJA, Prestat E, Macedo A, O'Brien PO, Camargo PHC de, Haigh SJ. Real-time imaging and elemental mapping of AgAu nanoparticle transformations [Internet]. Nanoscale. 2014 ; 6( 22): 13598-13605.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1039/c4nr04837g
    • Vancouver

      Lewis EA, Slater TJA, Prestat E, Macedo A, O'Brien PO, Camargo PHC de, Haigh SJ. Real-time imaging and elemental mapping of AgAu nanoparticle transformations [Internet]. Nanoscale. 2014 ; 6( 22): 13598-13605.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1039/c4nr04837g

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024