Filtros : "Escolà, Alexandre" Limpar

Filtros



Refine with date range


  • Source: Precision Agriculture. Unidade: ESALQ

    Subjects: DOSSEL (BOTÂNICA), LARANJA, TECNOLOGIA LIDAR, VARIABILIDADE ESPACIAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COLAÇO, André Freitas et al. Spatial variability in commercial orange groves. Part 1: canopy volume and height. Precision Agriculture, v. 20, n. 4, p. 788-804, 2019Tradução . . Disponível em: https://doi.org/10.1007/s11119-018-9612-3. Acesso em: 02 nov. 2024.
    • APA

      Colaço, A. F., Molin, J. P., Rosell-Polo, J. R., & Escolà, A. (2019). Spatial variability in commercial orange groves. Part 1: canopy volume and height. Precision Agriculture, 20( 4), 788-804. doi:10.1007/s11119-018-9612-3
    • NLM

      Colaço AF, Molin JP, Rosell-Polo JR, Escolà A. Spatial variability in commercial orange groves. Part 1: canopy volume and height [Internet]. Precision Agriculture. 2019 ; 20( 4): 788-804.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1007/s11119-018-9612-3
    • Vancouver

      Colaço AF, Molin JP, Rosell-Polo JR, Escolà A. Spatial variability in commercial orange groves. Part 1: canopy volume and height [Internet]. Precision Agriculture. 2019 ; 20( 4): 788-804.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1007/s11119-018-9612-3
  • Source: Precision Agriculture. Unidade: ESALQ

    Subjects: AGRICULTURA DE PRECISÃO, DOSSEL (BOTÂNICA), LARANJA, TECNOLOGIA LIDAR, VARIABILIDADE ESPACIAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COLAÇO, André Freitas et al. Spatial variability in commercial orange groves: Part 1: canopy volume and height. Precision Agriculture, v. 20, p. 788–804, 2019Tradução . . Disponível em: https://doi.org/10.1007/s11119-018-9612-3. Acesso em: 02 nov. 2024.
    • APA

      Colaço, A. F., Molin, J. P., Rosell‑Polo, J. R., & Escolà, A. (2019). Spatial variability in commercial orange groves: Part 1: canopy volume and height. Precision Agriculture, 20, 788–804. doi:10.1007/s11119-018-9612-3
    • NLM

      Colaço AF, Molin JP, Rosell‑Polo JR, Escolà A. Spatial variability in commercial orange groves: Part 1: canopy volume and height [Internet]. Precision Agriculture. 2019 ; 20 788–804.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1007/s11119-018-9612-3
    • Vancouver

      Colaço AF, Molin JP, Rosell‑Polo JR, Escolà A. Spatial variability in commercial orange groves: Part 1: canopy volume and height [Internet]. Precision Agriculture. 2019 ; 20 788–804.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1007/s11119-018-9612-3
  • Source: Precision Agriculture. Unidade: ESALQ

    Subjects: DOSSEL (BOTÂNICA), LARANJA, SOLOS, TECNOLOGIA LIDAR, VARIABILIDADE ESPACIAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COLAÇO, André Freitas et al. Spatial variability in commercial orange groves. Part 2: relating canopy geometry to soil attributes and historical yield. Precision Agriculture, v. 20, n. 4, p. 805-822, 2019Tradução . . Disponível em: https://doi.org/10.1007/s11119-018-9615-0. Acesso em: 02 nov. 2024.
    • APA

      Colaço, A. F., Molin, J. P., Rosell-Polo, J. R., & Escolà, A. (2019). Spatial variability in commercial orange groves. Part 2: relating canopy geometry to soil attributes and historical yield. Precision Agriculture, 20( 4), 805-822. doi:10.1007/s11119-018-9615-0
    • NLM

      Colaço AF, Molin JP, Rosell-Polo JR, Escolà A. Spatial variability in commercial orange groves. Part 2: relating canopy geometry to soil attributes and historical yield [Internet]. Precision Agriculture. 2019 ; 20( 4): 805-822.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1007/s11119-018-9615-0
    • Vancouver

      Colaço AF, Molin JP, Rosell-Polo JR, Escolà A. Spatial variability in commercial orange groves. Part 2: relating canopy geometry to soil attributes and historical yield [Internet]. Precision Agriculture. 2019 ; 20( 4): 805-822.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1007/s11119-018-9615-0
  • Source: Horticulture Research. Unidade: ESALQ

    Subjects: AGRICULTURA DE PRECISÃO, FENÓTIPOS, HORTICULTURA, SENSOR, TECNOLOGIA LIDAR

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COLAÇO, André F et al. Application of light detection and ranging and ultrasonic sensors to high-throughput phenotyping and precision horticulture: current status and challenges. Horticulture Research, v. 5, n. 1, p. 1-11, 2018Tradução . . Disponível em: https://doi.org/10.1038/s41438-018-0043-0. Acesso em: 02 nov. 2024.
    • APA

      Colaço, A. F., Molin, J. P., Rosell-Polo, J. R., & Escolà, A. (2018). Application of light detection and ranging and ultrasonic sensors to high-throughput phenotyping and precision horticulture: current status and challenges. Horticulture Research, 5( 1), 1-11. doi:10.1038/s41438-018-0043-0
    • NLM

      Colaço AF, Molin JP, Rosell-Polo JR, Escolà A. Application of light detection and ranging and ultrasonic sensors to high-throughput phenotyping and precision horticulture: current status and challenges [Internet]. Horticulture Research. 2018 ; 5( 1): 1-11.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1038/s41438-018-0043-0
    • Vancouver

      Colaço AF, Molin JP, Rosell-Polo JR, Escolà A. Application of light detection and ranging and ultrasonic sensors to high-throughput phenotyping and precision horticulture: current status and challenges [Internet]. Horticulture Research. 2018 ; 5( 1): 1-11.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1038/s41438-018-0043-0
  • Source: Remote Sensing. Unidade: ESALQ

    Subjects: DOSSEL (BOTÂNICA), LARANJA, LASER, SENSORIAMENTO REMOTO

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COLAÇO, André et al. A method to obtain orange crop geometry information using a mobile terrestrial laser scanner and 3D modeling. Remote Sensing, v. 9, n. 8, p. 763-783, 2017Tradução . . Disponível em: https://doi.org/10.3390/rs9080763. Acesso em: 02 nov. 2024.
    • APA

      Colaço, A., Trevisan, R. G., Molin, J. P., Rosell-Polo, J., & Escolà, A. (2017). A method to obtain orange crop geometry information using a mobile terrestrial laser scanner and 3D modeling. Remote Sensing, 9( 8), 763-783. doi:10.3390/rs9080763
    • NLM

      Colaço A, Trevisan RG, Molin JP, Rosell-Polo J, Escolà A. A method to obtain orange crop geometry information using a mobile terrestrial laser scanner and 3D modeling [Internet]. Remote Sensing. 2017 ; 9( 8): 763-783.[citado 2024 nov. 02 ] Available from: https://doi.org/10.3390/rs9080763
    • Vancouver

      Colaço A, Trevisan RG, Molin JP, Rosell-Polo J, Escolà A. A method to obtain orange crop geometry information using a mobile terrestrial laser scanner and 3D modeling [Internet]. Remote Sensing. 2017 ; 9( 8): 763-783.[citado 2024 nov. 02 ] Available from: https://doi.org/10.3390/rs9080763

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024