Source: International Journal of Computer Assisted Radiology and Surgery. Conference titles: International Congress and Exhibition on Computer Assisted Radiology and Surgery - CARS. Unidade: FMRP
Subjects: FIBROSE PULMONAR, BIOMARCADORES, INTELIGÊNCIA ARTIFICIAL, RADIOLOGIA, DIAGNÓSTICO POR COMPUTADOR
ABNT
DORILEO, Éderson Antonio Gomes et al. AI-based radiomic approach in high-resolution CT images for differential diagnosis of idiopathic pulmonary fibrosis. International Journal of Computer Assisted Radiology and Surgery. Heidelberg: Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo. Disponível em: https://doi.org/10.1007/s11548-020-02171-6. Acesso em: 12 nov. 2024. , 2020APA
Dorileo, É. A. G., Koenigkam-Santos, M., Fabro, A. T., & Azevedo-Marques, P. M. de. (2020). AI-based radiomic approach in high-resolution CT images for differential diagnosis of idiopathic pulmonary fibrosis. International Journal of Computer Assisted Radiology and Surgery. Heidelberg: Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo. doi:10.1007/s11548-020-02171-6NLM
Dorileo ÉAG, Koenigkam-Santos M, Fabro AT, Azevedo-Marques PM de. AI-based radiomic approach in high-resolution CT images for differential diagnosis of idiopathic pulmonary fibrosis [Internet]. International Journal of Computer Assisted Radiology and Surgery. 2020 ; 15 S120-S121.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1007/s11548-020-02171-6Vancouver
Dorileo ÉAG, Koenigkam-Santos M, Fabro AT, Azevedo-Marques PM de. AI-based radiomic approach in high-resolution CT images for differential diagnosis of idiopathic pulmonary fibrosis [Internet]. International Journal of Computer Assisted Radiology and Surgery. 2020 ; 15 S120-S121.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1007/s11548-020-02171-6