Filtros : "Dacanal, Gustavo César" "2023" "Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)" "FZEA" Limpar

Filtros



Refine with date range


  • Source: Food Science and Technology International. Unidade: FZEA

    Subjects: PECTINA, DIÓXIDO DE CARBONO, TECNOLOGIA DE ALIMENTOS, SUCOS DE FRUTAS, LARANJA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SULTANI, Thais Madoglio et al. The combined effect of supercritical carbon dioxide and mild temperatures on pectin methylesterase inactivation in orange juice. Food Science and Technology International, p. 1-12, 2023Tradução . . Disponível em: https://doi.org/10.1177/10820132231172363. Acesso em: 02 nov. 2024.
    • APA

      Sultani, T. M., Francisco, A. C. P., Dacanal, G. C., Oliveira, A. L. de, & Petrus, R. R. (2023). The combined effect of supercritical carbon dioxide and mild temperatures on pectin methylesterase inactivation in orange juice. Food Science and Technology International, 1-12. doi:10.1177/10820132231172363
    • NLM

      Sultani TM, Francisco ACP, Dacanal GC, Oliveira AL de, Petrus RR. The combined effect of supercritical carbon dioxide and mild temperatures on pectin methylesterase inactivation in orange juice [Internet]. Food Science and Technology International. 2023 ; 1-12.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1177/10820132231172363
    • Vancouver

      Sultani TM, Francisco ACP, Dacanal GC, Oliveira AL de, Petrus RR. The combined effect of supercritical carbon dioxide and mild temperatures on pectin methylesterase inactivation in orange juice [Internet]. Food Science and Technology International. 2023 ; 1-12.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1177/10820132231172363
  • Unidade: FZEA

    Subjects: ANÁLISE SENSORIAL DE ALIMENTOS, SECAGEM DE ALIMENTOS, REDES NEURAIS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LOPES, Rafael Zinni. Evaluation of sensory crispness of dry crispy foods by convolutional neural networks. 2023. Dissertação (Mestrado) – Universidade de São Paulo, Pirassununga, 2023. Disponível em: https://www.teses.usp.br/teses/disponiveis/74/74133/tde-09022024-105654/. Acesso em: 02 nov. 2024.
    • APA

      Lopes, R. Z. (2023). Evaluation of sensory crispness of dry crispy foods by convolutional neural networks (Dissertação (Mestrado). Universidade de São Paulo, Pirassununga. Recuperado de https://www.teses.usp.br/teses/disponiveis/74/74133/tde-09022024-105654/
    • NLM

      Lopes RZ. Evaluation of sensory crispness of dry crispy foods by convolutional neural networks [Internet]. 2023 ;[citado 2024 nov. 02 ] Available from: https://www.teses.usp.br/teses/disponiveis/74/74133/tde-09022024-105654/
    • Vancouver

      Lopes RZ. Evaluation of sensory crispness of dry crispy foods by convolutional neural networks [Internet]. 2023 ;[citado 2024 nov. 02 ] Available from: https://www.teses.usp.br/teses/disponiveis/74/74133/tde-09022024-105654/
  • Source: Journal of Texture Studies. Unidade: FZEA

    Subjects: REDES NEURAIS, INDÚSTRIA DE ALIMENTOS, COMPORTAMENTO DO CONSUMIDOR, CARNES E DERIVADOS, BATATA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LOPES, Rafael Zinni e DACANAL, Gustavo César. Classification of crispness of food materials by deep neural networks. Journal of Texture Studies, v. 54, n. 6, p. 845-859, 2023Tradução . . Disponível em: https://doi.org/10.1111/jtxs.12792. Acesso em: 02 nov. 2024.
    • APA

      Lopes, R. Z., & Dacanal, G. C. (2023). Classification of crispness of food materials by deep neural networks. Journal of Texture Studies, 54( 6), 845-859. doi:10.1111/jtxs.12792
    • NLM

      Lopes RZ, Dacanal GC. Classification of crispness of food materials by deep neural networks [Internet]. Journal of Texture Studies. 2023 ; 54( 6): 845-859.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1111/jtxs.12792
    • Vancouver

      Lopes RZ, Dacanal GC. Classification of crispness of food materials by deep neural networks [Internet]. Journal of Texture Studies. 2023 ; 54( 6): 845-859.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1111/jtxs.12792

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024