Filtros : "Condori, Rómulo" Limpar

Filtros



Refine with date range


  • Source: Proceedings CILAMCE. Conference titles: Ibero-Latin-American Congress on Computational Methods in Engineering. Unidade: FZEA

    Assunto: MÉTODO DOS ELEMENTOS FINITOS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HANCCO, R et al. Comparative analysis of the performance of a enriched mixed finite element method with static condensation for Poisson problems. 2020, Anais.. Foz do Iguaçu: Associação Brasileira de Métodos Computacionais em Engenharia (ABMEC), 2020. Disponível em: https://cilamce.com.br/arearestrita/apresentacoes/199/8001.pdf. Acesso em: 31 out. 2024.
    • APA

      Hancco, R., Ayñayanque, J., Condori, R., Velasquez, E., Mestas, R., Mamani, F., & Calle, J. L. D. (2020). Comparative analysis of the performance of a enriched mixed finite element method with static condensation for Poisson problems. In Proceedings CILAMCE. Foz do Iguaçu: Associação Brasileira de Métodos Computacionais em Engenharia (ABMEC). Recuperado de https://cilamce.com.br/arearestrita/apresentacoes/199/8001.pdf
    • NLM

      Hancco R, Ayñayanque J, Condori R, Velasquez E, Mestas R, Mamani F, Calle JLD. Comparative analysis of the performance of a enriched mixed finite element method with static condensation for Poisson problems [Internet]. Proceedings CILAMCE. 2020 ;[citado 2024 out. 31 ] Available from: https://cilamce.com.br/arearestrita/apresentacoes/199/8001.pdf
    • Vancouver

      Hancco R, Ayñayanque J, Condori R, Velasquez E, Mestas R, Mamani F, Calle JLD. Comparative analysis of the performance of a enriched mixed finite element method with static condensation for Poisson problems [Internet]. Proceedings CILAMCE. 2020 ;[citado 2024 out. 31 ] Available from: https://cilamce.com.br/arearestrita/apresentacoes/199/8001.pdf
  • Source: Proceedings CILAMCE. Conference titles: Ibero-Latin-American Congress on Computational Methods in Engineering. Unidade: FZEA

    Assunto: MÉTODO DOS ELEMENTOS FINITOS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SARMIENTO, Aldo G. et al. Study of the enriched mixed finite element method using comparisons of computational cost and errors with formulations in continuous and discontinuous functions and mixed scheme on quadrilateral finite elements. 2020, Anais.. Foz do Iguaçu: Associação Brasileira de Métodos Computacionais em Engenharia (ABMEC), 2020. Disponível em: https://cilamce.com.br/arearestrita/apresentacoes/178/8554.pdf. Acesso em: 31 out. 2024.
    • APA

      Sarmiento, A. G., Ayñayanque, J., Condori, R., & Calle, J. L. D. (2020). Study of the enriched mixed finite element method using comparisons of computational cost and errors with formulations in continuous and discontinuous functions and mixed scheme on quadrilateral finite elements. In Proceedings CILAMCE. Foz do Iguaçu: Associação Brasileira de Métodos Computacionais em Engenharia (ABMEC). Recuperado de https://cilamce.com.br/arearestrita/apresentacoes/178/8554.pdf
    • NLM

      Sarmiento AG, Ayñayanque J, Condori R, Calle JLD. Study of the enriched mixed finite element method using comparisons of computational cost and errors with formulations in continuous and discontinuous functions and mixed scheme on quadrilateral finite elements [Internet]. Proceedings CILAMCE. 2020 ;[citado 2024 out. 31 ] Available from: https://cilamce.com.br/arearestrita/apresentacoes/178/8554.pdf
    • Vancouver

      Sarmiento AG, Ayñayanque J, Condori R, Calle JLD. Study of the enriched mixed finite element method using comparisons of computational cost and errors with formulations in continuous and discontinuous functions and mixed scheme on quadrilateral finite elements [Internet]. Proceedings CILAMCE. 2020 ;[citado 2024 out. 31 ] Available from: https://cilamce.com.br/arearestrita/apresentacoes/178/8554.pdf

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024