Source: Proceedings. Conference titles: International Conference on Cognitive Machine Intelligence - CogMI. Unidade: IME
Subjects: VISÃO COMPUTACIONAL, ENGENHARIA DE CONHECIMENTO, RECONHECIMENTO DE OBJETOS, VEÍCULOS
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
SUPREM, Abhijit et al. Constructive interpretability with colabel: corroborative integration, complementary features, and collaborative learning. 2022, Anais.. Piscataway: IEEE, 2022. Disponível em: https://doi.org/10.1109/CogMI56440.2022.00021. Acesso em: 07 nov. 2024.APA
Suprem, A., Vaidya, S., Cherkadi, S., Singh, P., Ferreira, J. E., & Pu, C. (2022). Constructive interpretability with colabel: corroborative integration, complementary features, and collaborative learning. In Proceedings. Piscataway: IEEE. doi:10.1109/CogMI56440.2022.00021NLM
Suprem A, Vaidya S, Cherkadi S, Singh P, Ferreira JE, Pu C. Constructive interpretability with colabel: corroborative integration, complementary features, and collaborative learning [Internet]. Proceedings. 2022 ;[citado 2024 nov. 07 ] Available from: https://doi.org/10.1109/CogMI56440.2022.00021Vancouver
Suprem A, Vaidya S, Cherkadi S, Singh P, Ferreira JE, Pu C. Constructive interpretability with colabel: corroborative integration, complementary features, and collaborative learning [Internet]. Proceedings. 2022 ;[citado 2024 nov. 07 ] Available from: https://doi.org/10.1109/CogMI56440.2022.00021