Fonte: Journal of Applied Biomechanics. Unidade: EACH
Assuntos: BIOMECÂNICA, CALÇADOS, CORRIDAS, RECONHECIMENTO DE PADRÕES, ELETROMIOGRAFIA
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
PIRES, Ricardo et al. Using a support-vector machine algorithm to classify lower extremity EMG signals during running shod/unshod with different foot strike patterns. Journal of Applied Biomechanics, p. 01-15, 2018Tradução . . Disponível em: https://doi.org/10.1123/jab.2017-0349. Acesso em: 31 out. 2024.APA
Pires, R., Falcari, T., Campo, A. B., Pulcineli, B. C., Hamill, J., & Ervilha, U. F. (2018). Using a support-vector machine algorithm to classify lower extremity EMG signals during running shod/unshod with different foot strike patterns. Journal of Applied Biomechanics, 01-15. doi:10.1123/jab.2017-0349NLM
Pires R, Falcari T, Campo AB, Pulcineli BC, Hamill J, Ervilha UF. Using a support-vector machine algorithm to classify lower extremity EMG signals during running shod/unshod with different foot strike patterns [Internet]. Journal of Applied Biomechanics. 2018 ; 01-15.[citado 2024 out. 31 ] Available from: https://doi.org/10.1123/jab.2017-0349Vancouver
Pires R, Falcari T, Campo AB, Pulcineli BC, Hamill J, Ervilha UF. Using a support-vector machine algorithm to classify lower extremity EMG signals during running shod/unshod with different foot strike patterns [Internet]. Journal of Applied Biomechanics. 2018 ; 01-15.[citado 2024 out. 31 ] Available from: https://doi.org/10.1123/jab.2017-0349