Repetition-free longest common subsequence (2008)
Source: Electronic Notes in Discrete Mathematics. Conference titles: Latin-American Algorithms, Graphs, and Optimization Symposium - LAGOS. Unidade: IME
Assunto: ALGORITMOS DE APROXIMAÇÃO
ABNT
ADI, Said Sadique et al. Repetition-free longest common subsequence. Electronic Notes in Discrete Mathematics. Amsterdam: Instituto de Matemática e Estatística, Universidade de São Paulo. Disponível em: https://doi.org/10.1016/j.endm.2008.01.042. Acesso em: 15 nov. 2024. , 2008APA
Adi, S. S., Braga, M. D. V., Fernandes, C. G., Ferreira, C. E., Martinez, F. H. V., Sagot, M. F., et al. (2008). Repetition-free longest common subsequence. Electronic Notes in Discrete Mathematics. Amsterdam: Instituto de Matemática e Estatística, Universidade de São Paulo. doi:10.1016/j.endm.2008.01.042NLM
Adi SS, Braga MDV, Fernandes CG, Ferreira CE, Martinez FHV, Sagot MF, Stefanes MA, Tjandraatmadja C, Wakabayashi Y. Repetition-free longest common subsequence [Internet]. Electronic Notes in Discrete Mathematics. 2008 ; 30 243-248.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1016/j.endm.2008.01.042Vancouver
Adi SS, Braga MDV, Fernandes CG, Ferreira CE, Martinez FHV, Sagot MF, Stefanes MA, Tjandraatmadja C, Wakabayashi Y. Repetition-free longest common subsequence [Internet]. Electronic Notes in Discrete Mathematics. 2008 ; 30 243-248.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1016/j.endm.2008.01.042