Filtros : "Universitat Autònoma de Barcelona (UAB)" "ICMC" Removidos: "TUBERCULOSE" "Silva, Paulo Leandro Dattori da" "ANDRADE FILHO, MARINHO GOMES DE" "Financiado pela AGAUR" "Financiado pela FINEP" Limpar

Filtros



Limitar por data


  • Fonte: Communications in Contemporary Mathematics. Unidade: ICMC

    Assuntos: TEORIA QUALITATIVA, EQUAÇÕES NÃO LINEARES

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LLIBRE, Jaume e OLIVEIRA, Regilene Delazari dos Santos. Quadratic systems with an invariant conic having Darboux invariants. Communications in Contemporary Mathematics, v. 20, n. 4, p. 1750033-1-1750033-15, 2018Tradução . . Disponível em: https://doi.org/10.1142/S021919971750033X. Acesso em: 03 nov. 2024.
    • APA

      Llibre, J., & Oliveira, R. D. dos S. (2018). Quadratic systems with an invariant conic having Darboux invariants. Communications in Contemporary Mathematics, 20( 4), 1750033-1-1750033-15. doi:10.1142/S021919971750033X
    • NLM

      Llibre J, Oliveira RD dos S. Quadratic systems with an invariant conic having Darboux invariants [Internet]. Communications in Contemporary Mathematics. 2018 ; 20( 4): 1750033-1-1750033-15.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1142/S021919971750033X
    • Vancouver

      Llibre J, Oliveira RD dos S. Quadratic systems with an invariant conic having Darboux invariants [Internet]. Communications in Contemporary Mathematics. 2018 ; 20( 4): 1750033-1-1750033-15.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1142/S021919971750033X
  • Fonte: Computational and Applied Mathematics. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, SISTEMAS DIFERENCIAIS LINEARES, TEORIA QUALITATIVA, TEORIA DA BIFURCAÇÃO

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LLIBRE, Jaume e OLIVEIRA, Regilene Delazari dos Santos e RODRIGUES, Camila Ap. B. On the periodic solutions of the Michelson continuous and discontinuous piecewise linear differential system. Computational and Applied Mathematics, v. 37, n. 2, p. 1550-1561, 2018Tradução . . Disponível em: https://doi.org/10.1007/s40314-016-0413-x. Acesso em: 03 nov. 2024.
    • APA

      Llibre, J., Oliveira, R. D. dos S., & Rodrigues, C. A. B. (2018). On the periodic solutions of the Michelson continuous and discontinuous piecewise linear differential system. Computational and Applied Mathematics, 37( 2), 1550-1561. doi:10.1007/s40314-016-0413-x
    • NLM

      Llibre J, Oliveira RD dos S, Rodrigues CAB. On the periodic solutions of the Michelson continuous and discontinuous piecewise linear differential system [Internet]. Computational and Applied Mathematics. 2018 ; 37( 2): 1550-1561.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1007/s40314-016-0413-x
    • Vancouver

      Llibre J, Oliveira RD dos S, Rodrigues CAB. On the periodic solutions of the Michelson continuous and discontinuous piecewise linear differential system [Internet]. Computational and Applied Mathematics. 2018 ; 37( 2): 1550-1561.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1007/s40314-016-0413-x
  • Fonte: Topology and its Applications. Unidade: ICMC

    Assuntos: SISTEMAS HAMILTONIANOS, DINÂMICA TOPOLÓGICA, TEORIA QUALITATIVA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LLIBRE, Jaume e OLIVEIRA, Regilene Delazari dos Santos e VALLS, Claudia. Phase portraits for some symmetric Riccati cubic polynomial differential equations. Topology and its Applications, v. 234, p. 220-237, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2017.11.023. Acesso em: 03 nov. 2024.
    • APA

      Llibre, J., Oliveira, R. D. dos S., & Valls, C. (2018). Phase portraits for some symmetric Riccati cubic polynomial differential equations. Topology and its Applications, 234, 220-237. doi:10.1016/j.topol.2017.11.023
    • NLM

      Llibre J, Oliveira RD dos S, Valls C. Phase portraits for some symmetric Riccati cubic polynomial differential equations [Internet]. Topology and its Applications. 2018 ; 234 220-237.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1016/j.topol.2017.11.023
    • Vancouver

      Llibre J, Oliveira RD dos S, Valls C. Phase portraits for some symmetric Riccati cubic polynomial differential equations [Internet]. Topology and its Applications. 2018 ; 234 220-237.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1016/j.topol.2017.11.023
  • Fonte: Discrete and Continuous Dynamical Systems - Series B. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, TEORIA QUALITATIVA, SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ITIKAWA, Jackson et al. Limit cycles in uniform isochronous centers of discontinuous differential systems with four zones. Discrete and Continuous Dynamical Systems - Series B, v. No 2017, n. 9, p. 3259-3272, 2017Tradução . . Disponível em: https://doi.org/10.3934/dcdsb.2017136. Acesso em: 03 nov. 2024.
    • APA

      Itikawa, J., Llibre, J., Mereu, A. C., & Oliveira, R. D. dos S. (2017). Limit cycles in uniform isochronous centers of discontinuous differential systems with four zones. Discrete and Continuous Dynamical Systems - Series B, No 2017( 9), 3259-3272. doi:10.3934/dcdsb.2017136
    • NLM

      Itikawa J, Llibre J, Mereu AC, Oliveira RD dos S. Limit cycles in uniform isochronous centers of discontinuous differential systems with four zones [Internet]. Discrete and Continuous Dynamical Systems - Series B. 2017 ; No 2017( 9): 3259-3272.[citado 2024 nov. 03 ] Available from: https://doi.org/10.3934/dcdsb.2017136
    • Vancouver

      Itikawa J, Llibre J, Mereu AC, Oliveira RD dos S. Limit cycles in uniform isochronous centers of discontinuous differential systems with four zones [Internet]. Discrete and Continuous Dynamical Systems - Series B. 2017 ; No 2017( 9): 3259-3272.[citado 2024 nov. 03 ] Available from: https://doi.org/10.3934/dcdsb.2017136
  • Fonte: Journal of Nonlinear Mathematical Physics. Unidade: ICMC

    Assuntos: TEORIA QUALITATIVA, SISTEMAS NÃO LINEARES, SUPERFÍCIES ALGÉBRICAS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LLIBRE, Jaume e OLIVEIRA, Regilene Delazari dos Santos e VALLS, Claudia. On the Darboux integrability of a three-dimensional forced-damped differential system. Journal of Nonlinear Mathematical Physics, v. 24, n. 4, p. 473-494, 2017Tradução . . Disponível em: https://doi.org/10.1080/14029251.2017.1375686. Acesso em: 03 nov. 2024.
    • APA

      Llibre, J., Oliveira, R. D. dos S., & Valls, C. (2017). On the Darboux integrability of a three-dimensional forced-damped differential system. Journal of Nonlinear Mathematical Physics, 24( 4), 473-494. doi:10.1080/14029251.2017.1375686
    • NLM

      Llibre J, Oliveira RD dos S, Valls C. On the Darboux integrability of a three-dimensional forced-damped differential system [Internet]. Journal of Nonlinear Mathematical Physics. 2017 ; 24( 4): 473-494.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1080/14029251.2017.1375686
    • Vancouver

      Llibre J, Oliveira RD dos S, Valls C. On the Darboux integrability of a three-dimensional forced-damped differential system [Internet]. Journal of Nonlinear Mathematical Physics. 2017 ; 24( 4): 473-494.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1080/14029251.2017.1375686
  • Fonte: International Journal of Bifurcation and Chaos. Unidade: ICMC

    Assuntos: SINGULARIDADES, TEORIA QUALITATIVA, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, SISTEMAS DIFERENCIAIS, INVARIANTES

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARTÉS, Joan C e OLIVEIRA, Regilene Delazari dos Santos e REZENDE, Alex C. Topological classification of quadratic polynomial differential systems with a finite semi-elemental triple saddle. International Journal of Bifurcation and Chaos, v. 26, n. 11, p. 1650188-1-1650188-26, 2016Tradução . . Disponível em: https://doi.org/10.1142/S0218127416501881. Acesso em: 03 nov. 2024.
    • APA

      Artés, J. C., Oliveira, R. D. dos S., & Rezende, A. C. (2016). Topological classification of quadratic polynomial differential systems with a finite semi-elemental triple saddle. International Journal of Bifurcation and Chaos, 26( 11), 1650188-1-1650188-26. doi:10.1142/S0218127416501881
    • NLM

      Artés JC, Oliveira RD dos S, Rezende AC. Topological classification of quadratic polynomial differential systems with a finite semi-elemental triple saddle [Internet]. International Journal of Bifurcation and Chaos. 2016 ; 26( 11): 1650188-1-1650188-26.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1142/S0218127416501881
    • Vancouver

      Artés JC, Oliveira RD dos S, Rezende AC. Topological classification of quadratic polynomial differential systems with a finite semi-elemental triple saddle [Internet]. International Journal of Bifurcation and Chaos. 2016 ; 26( 11): 1650188-1-1650188-26.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1142/S0218127416501881
  • Fonte: Communications in Contemporary Mathematics. Unidade: ICMC

    Assuntos: SINGULARIDADES, TEORIA QUALITATIVA, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LLIBRE, Jaume e OLIVEIRA, Regilene Delazari dos Santos. Quadratic systems with invariant straight lines of total multiplicity two having Darboux invariants. Communications in Contemporary Mathematics, v. 17, n. 3, p. 1450018-1-1450018-17, 2015Tradução . . Disponível em: https://doi.org/10.1142/S0219199714500187. Acesso em: 03 nov. 2024.
    • APA

      Llibre, J., & Oliveira, R. D. dos S. (2015). Quadratic systems with invariant straight lines of total multiplicity two having Darboux invariants. Communications in Contemporary Mathematics, 17( 3), 1450018-1-1450018-17. doi:10.1142/S0219199714500187
    • NLM

      Llibre J, Oliveira RD dos S. Quadratic systems with invariant straight lines of total multiplicity two having Darboux invariants [Internet]. Communications in Contemporary Mathematics. 2015 ; 17( 3): 1450018-1-1450018-17.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1142/S0219199714500187
    • Vancouver

      Llibre J, Oliveira RD dos S. Quadratic systems with invariant straight lines of total multiplicity two having Darboux invariants [Internet]. Communications in Contemporary Mathematics. 2015 ; 17( 3): 1450018-1-1450018-17.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1142/S0219199714500187
  • Fonte: Nonlinear Dynamics. Unidade: ICMC

    Assuntos: SINGULARIDADES, SISTEMAS DINÂMICOS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LLIBRE, Jaume e OLIVEIRA, Regilene Delazari dos Santos e VALLS, Claudia. On the integrability and the zero-Hopf bifurcation of a Chen-Wang differential system. Nonlinear Dynamics, v. 80, n. 1-2, p. 353-361, 2015Tradução . . Disponível em: https://doi.org/10.1007/s11071-014-1873-4. Acesso em: 03 nov. 2024.
    • APA

      Llibre, J., Oliveira, R. D. dos S., & Valls, C. (2015). On the integrability and the zero-Hopf bifurcation of a Chen-Wang differential system. Nonlinear Dynamics, 80( 1-2), 353-361. doi:10.1007/s11071-014-1873-4
    • NLM

      Llibre J, Oliveira RD dos S, Valls C. On the integrability and the zero-Hopf bifurcation of a Chen-Wang differential system [Internet]. Nonlinear Dynamics. 2015 ; 80( 1-2): 353-361.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1007/s11071-014-1873-4
    • Vancouver

      Llibre J, Oliveira RD dos S, Valls C. On the integrability and the zero-Hopf bifurcation of a Chen-Wang differential system [Internet]. Nonlinear Dynamics. 2015 ; 80( 1-2): 353-361.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1007/s11071-014-1873-4
  • Fonte: International Journal of Bifurcation and Chaos. Unidade: ICMC

    Assuntos: SINGULARIDADES, TEORIA QUALITATIVA, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARTÉS, Joan C e REZENDE, Alex C e OLIVEIRA, Regilene Delazari dos Santos. The geometry of quadratic polynomial differential systems with a finite and an infinite Saddle-Node (A, B). International Journal of Bifurcation and Chaos, v. 24, n. 4, p. 1450044-1-1450044-30, 2014Tradução . . Disponível em: https://doi.org/10.1142/S0218127414500448. Acesso em: 03 nov. 2024.
    • APA

      Artés, J. C., Rezende, A. C., & Oliveira, R. D. dos S. (2014). The geometry of quadratic polynomial differential systems with a finite and an infinite Saddle-Node (A, B). International Journal of Bifurcation and Chaos, 24( 4), 1450044-1-1450044-30. doi:10.1142/S0218127414500448
    • NLM

      Artés JC, Rezende AC, Oliveira RD dos S. The geometry of quadratic polynomial differential systems with a finite and an infinite Saddle-Node (A, B) [Internet]. International Journal of Bifurcation and Chaos. 2014 ; 24( 4): 1450044-1-1450044-30.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1142/S0218127414500448
    • Vancouver

      Artés JC, Rezende AC, Oliveira RD dos S. The geometry of quadratic polynomial differential systems with a finite and an infinite Saddle-Node (A, B) [Internet]. International Journal of Bifurcation and Chaos. 2014 ; 24( 4): 1450044-1-1450044-30.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1142/S0218127414500448
  • Fonte: International Journal of Bifurcation and Chaos. Unidade: ICMC

    Assuntos: SINGULARIDADES, TEORIA QUALITATIVA, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARTÉS, Joan C e REZENDE, Alex C e OLIVEIRA, Regilene Delazari dos Santos. Global phase portraits of quadratic polynomial differential systems with a semi-elemental triple node. International Journal of Bifurcation and Chaos, v. 23, n. 8, p. 1350140-1-1350140-21, 2013Tradução . . Disponível em: https://doi.org/10.1142/S021812741350140X. Acesso em: 03 nov. 2024.
    • APA

      Artés, J. C., Rezende, A. C., & Oliveira, R. D. dos S. (2013). Global phase portraits of quadratic polynomial differential systems with a semi-elemental triple node. International Journal of Bifurcation and Chaos, 23( 8), 1350140-1-1350140-21. doi:10.1142/S021812741350140X
    • NLM

      Artés JC, Rezende AC, Oliveira RD dos S. Global phase portraits of quadratic polynomial differential systems with a semi-elemental triple node [Internet]. International Journal of Bifurcation and Chaos. 2013 ; 23( 8): 1350140-1-1350140-21.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1142/S021812741350140X
    • Vancouver

      Artés JC, Rezende AC, Oliveira RD dos S. Global phase portraits of quadratic polynomial differential systems with a semi-elemental triple node [Internet]. International Journal of Bifurcation and Chaos. 2013 ; 23( 8): 1350140-1-1350140-21.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1142/S021812741350140X
  • Fonte: Canadian Mathematical Bulletin. Unidade: ICMC

    Assuntos: SISTEMAS DINÂMICOS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VIDALON, Carlos Teobaldo Gutiérrez et al. Global injectivity of 'C POT. 1' maps of the real plane, inseparable leaves and the Palais–Smale condition. Canadian Mathematical Bulletin, v. 50, n. 3, p. 377-389, 2007Tradução . . Disponível em: https://doi.org/10.4153/CMB-2007-036-0. Acesso em: 03 nov. 2024.
    • APA

      Vidalon, C. T. G., Jarque, X., Llibre, J., & Teixeira, M. A. (2007). Global injectivity of 'C POT. 1' maps of the real plane, inseparable leaves and the Palais–Smale condition. Canadian Mathematical Bulletin, 50( 3), 377-389. doi:10.4153/CMB-2007-036-0
    • NLM

      Vidalon CTG, Jarque X, Llibre J, Teixeira MA. Global injectivity of 'C POT. 1' maps of the real plane, inseparable leaves and the Palais–Smale condition [Internet]. Canadian Mathematical Bulletin. 2007 ; 50( 3): 377-389.[citado 2024 nov. 03 ] Available from: https://doi.org/10.4153/CMB-2007-036-0
    • Vancouver

      Vidalon CTG, Jarque X, Llibre J, Teixeira MA. Global injectivity of 'C POT. 1' maps of the real plane, inseparable leaves and the Palais–Smale condition [Internet]. Canadian Mathematical Bulletin. 2007 ; 50( 3): 377-389.[citado 2024 nov. 03 ] Available from: https://doi.org/10.4153/CMB-2007-036-0

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2024