On stability properties of the Cubic-Quintic Schrödinger equation with δ-point interaction (2019)
Source: Communications on Pure & Applied Analysis. Unidade: IME
Subjects: EQUAÇÕES DIFERENCIAIS NÃO LINEARES, TEORIA ASSINTÓTICA, OPERADORES DIFERENCIAIS
ABNT
PAVA, Jaime Angulo e MELO, César Adolfo Hernández. On stability properties of the Cubic-Quintic Schrödinger equation with δ-point interaction. Communications on Pure & Applied Analysis, v. 18, n. 4, p. 2093–2116, 2019Tradução . . Disponível em: https://doi.org/10.3934/cpaa.2019094. Acesso em: 14 nov. 2024.APA
Pava, J. A., & Melo, C. A. H. (2019). On stability properties of the Cubic-Quintic Schrödinger equation with δ-point interaction. Communications on Pure & Applied Analysis, 18( 4), 2093–2116. doi:10.3934/cpaa.2019094NLM
Pava JA, Melo CAH. On stability properties of the Cubic-Quintic Schrödinger equation with δ-point interaction [Internet]. Communications on Pure & Applied Analysis. 2019 ; 18( 4): 2093–2116.[citado 2024 nov. 14 ] Available from: https://doi.org/10.3934/cpaa.2019094Vancouver
Pava JA, Melo CAH. On stability properties of the Cubic-Quintic Schrödinger equation with δ-point interaction [Internet]. Communications on Pure & Applied Analysis. 2019 ; 18( 4): 2093–2116.[citado 2024 nov. 14 ] Available from: https://doi.org/10.3934/cpaa.2019094