Filtros : "Ucrânia" "Horn, Roger A" Removidos: "Chu, L Y W" "Food and Chemical Toxicology" Limpar

Filtros



Refine with date range


  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ÁLGEBRA LINEAR, ÁLGEBRA MULTILINEAR, TEORIA DA REPRESENTAÇÃO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e HORN, Roger A e SERGEICHUK, Vladimir V. Specht’s criterion for systems of linear mappings. Linear Algebra and its Applications, v. 519, p. 278-295, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2017.01.006. Acesso em: 07 nov. 2024.
    • APA

      Futorny, V., Horn, R. A., & Sergeichuk, V. V. (2017). Specht’s criterion for systems of linear mappings. Linear Algebra and its Applications, 519, 278-295. doi:10.1016/j.laa.2017.01.006
    • NLM

      Futorny V, Horn RA, Sergeichuk VV. Specht’s criterion for systems of linear mappings [Internet]. Linear Algebra and its Applications. 2017 ; 519 278-295.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1016/j.laa.2017.01.006
    • Vancouver

      Futorny V, Horn RA, Sergeichuk VV. Specht’s criterion for systems of linear mappings [Internet]. Linear Algebra and its Applications. 2017 ; 519 278-295.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1016/j.laa.2017.01.006
  • Source: Linear Algebra ans its Applications. Unidade: IME

    Assunto: ÁLGEBRA LINEAR

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e HORN, Roger A e SERGEICHUK, Vladmir V. A canonical form for nonderogatory matrices under unitary similarity. Linear Algebra ans its Applications, v. 435, n. 4, p. 830-841, 2011Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2011.01.042. Acesso em: 07 nov. 2024.
    • APA

      Futorny, V., Horn, R. A., & Sergeichuk, V. V. (2011). A canonical form for nonderogatory matrices under unitary similarity. Linear Algebra ans its Applications, 435( 4), 830-841. doi:10.1016/j.laa.2011.01.042
    • NLM

      Futorny V, Horn RA, Sergeichuk VV. A canonical form for nonderogatory matrices under unitary similarity [Internet]. Linear Algebra ans its Applications. 2011 ; 435( 4): 830-841.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1016/j.laa.2011.01.042
    • Vancouver

      Futorny V, Horn RA, Sergeichuk VV. A canonical form for nonderogatory matrices under unitary similarity [Internet]. Linear Algebra ans its Applications. 2011 ; 435( 4): 830-841.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1016/j.laa.2011.01.042
  • Source: Journal of Mathematical Sciences. Unidade: IME

    Subjects: ÁLGEBRA LINEAR, ÁLGEBRA MULTILINEAR, MATRIZES, OPERADORES, OPERADORES LINEARES

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e HORN, Roger A e SERGEICHUK, Vladimir V. Classification of squared normal operators in unitary and Euclidean spaces. Journal of Mathematical Sciences, p. 950-955, 2008Tradução . . Disponível em: https://link-springer-com.ez67.periodicos.capes.gov.br/content/pdf/10.1007%2Fs10958-008-9252-7.pdf. Acesso em: 07 nov. 2024.
    • APA

      Futorny, V., Horn, R. A., & Sergeichuk, V. V. (2008). Classification of squared normal operators in unitary and Euclidean spaces. Journal of Mathematical Sciences, 950-955. Recuperado de https://link-springer-com.ez67.periodicos.capes.gov.br/content/pdf/10.1007%2Fs10958-008-9252-7.pdf
    • NLM

      Futorny V, Horn RA, Sergeichuk VV. Classification of squared normal operators in unitary and Euclidean spaces [Internet]. Journal of Mathematical Sciences. 2008 ; 950-955.[citado 2024 nov. 07 ] Available from: https://link-springer-com.ez67.periodicos.capes.gov.br/content/pdf/10.1007%2Fs10958-008-9252-7.pdf
    • Vancouver

      Futorny V, Horn RA, Sergeichuk VV. Classification of squared normal operators in unitary and Euclidean spaces [Internet]. Journal of Mathematical Sciences. 2008 ; 950-955.[citado 2024 nov. 07 ] Available from: https://link-springer-com.ez67.periodicos.capes.gov.br/content/pdf/10.1007%2Fs10958-008-9252-7.pdf
  • Source: Journal of Algebra. Unidade: IME

    Subjects: MATRIZES, FORMAS QUADRÁTICAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e HORN, Roger A e SERGEICHUK, Vladimir V. Tridiagonal canonical matrices of bilinear or sesquilinear forms and of pairs of symmetric, skew-symmetric, or Hermitian forms. Journal of Algebra, v. 319, n. 6, p. 2351-2371, 2008Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2008.01.002. Acesso em: 07 nov. 2024.
    • APA

      Futorny, V., Horn, R. A., & Sergeichuk, V. V. (2008). Tridiagonal canonical matrices of bilinear or sesquilinear forms and of pairs of symmetric, skew-symmetric, or Hermitian forms. Journal of Algebra, 319( 6), 2351-2371. doi:10.1016/j.jalgebra.2008.01.002
    • NLM

      Futorny V, Horn RA, Sergeichuk VV. Tridiagonal canonical matrices of bilinear or sesquilinear forms and of pairs of symmetric, skew-symmetric, or Hermitian forms [Internet]. Journal of Algebra. 2008 ; 319( 6): 2351-2371.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1016/j.jalgebra.2008.01.002
    • Vancouver

      Futorny V, Horn RA, Sergeichuk VV. Tridiagonal canonical matrices of bilinear or sesquilinear forms and of pairs of symmetric, skew-symmetric, or Hermitian forms [Internet]. Journal of Algebra. 2008 ; 319( 6): 2351-2371.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1016/j.jalgebra.2008.01.002

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024