Filtros : "Moldova" "ICMC" Removidos: "Indexado no Compumath Citation Index" "EACH-EACH" "IME-MAC" "1988" "Financiado pelo FUNDECT" Limpar

Filtros



Refine with date range


  • Unidade: ICMC

    Subjects: INVARIANTES, SISTEMAS DIFERENCIAIS, SINGULARIDADES

    Versão PublicadaAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Regilene Delazari dos Santos et al. Configurations of quadratic systems possessing three distinct infinite singularities and invariant parabolas. . São Carlos: ICMC-USP. Disponível em: https://repositorio.usp.br/item/003189042. Acesso em: 09 nov. 2024. , 2024
    • APA

      Oliveira, R. D. dos S., Rezende, A. C., Schlomiuk, D., & Vulpe, N. (2024). Configurations of quadratic systems possessing three distinct infinite singularities and invariant parabolas. São Carlos: ICMC-USP. Recuperado de https://repositorio.usp.br/item/003189042
    • NLM

      Oliveira RD dos S, Rezende AC, Schlomiuk D, Vulpe N. Configurations of quadratic systems possessing three distinct infinite singularities and invariant parabolas [Internet]. 2024 ;[citado 2024 nov. 09 ] Available from: https://repositorio.usp.br/item/003189042
    • Vancouver

      Oliveira RD dos S, Rezende AC, Schlomiuk D, Vulpe N. Configurations of quadratic systems possessing three distinct infinite singularities and invariant parabolas [Internet]. 2024 ;[citado 2024 nov. 09 ] Available from: https://repositorio.usp.br/item/003189042
  • Source: Revista Matemática Complutense. Unidade: ICMC

    Subjects: TEORIA DAS SINGULARIDADES, TEORIA QUALITATIVA, INVARIANTES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Regilene Delazari dos Santos et al. Characterization and bifurcation diagram of the family of quadratic differential systems with an invariant ellipse in terms of invariant polynomials. Revista Matemática Complutense, v. 35, n. 2, p. 361-413, 2022Tradução . . Disponível em: https://doi.org/10.1007/s13163-021-00398-8. Acesso em: 09 nov. 2024.
    • APA

      Oliveira, R. D. dos S., Rezende, A. C., Schlomiuk, D., & Vulpe, N. (2022). Characterization and bifurcation diagram of the family of quadratic differential systems with an invariant ellipse in terms of invariant polynomials. Revista Matemática Complutense, 35( 2), 361-413. doi:10.1007/s13163-021-00398-8
    • NLM

      Oliveira RD dos S, Rezende AC, Schlomiuk D, Vulpe N. Characterization and bifurcation diagram of the family of quadratic differential systems with an invariant ellipse in terms of invariant polynomials [Internet]. Revista Matemática Complutense. 2022 ; 35( 2): 361-413.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007/s13163-021-00398-8
    • Vancouver

      Oliveira RD dos S, Rezende AC, Schlomiuk D, Vulpe N. Characterization and bifurcation diagram of the family of quadratic differential systems with an invariant ellipse in terms of invariant polynomials [Internet]. Revista Matemática Complutense. 2022 ; 35( 2): 361-413.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007/s13163-021-00398-8
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, INVARIANTES, TEORIA DA BIFURCAÇÃO, SISTEMAS DIFERENCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOTA, Marcos Coutinho et al. Geometric analysis of quadratic differential systems with invariant ellipses. Topological Methods in Nonlinear Analysis, v. 59, n. 2A, p. 623-685, 2022Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2021.063. Acesso em: 09 nov. 2024.
    • APA

      Mota, M. C., Rezende, A. C., Schlomiuk, D., & Vulpe, N. (2022). Geometric analysis of quadratic differential systems with invariant ellipses. Topological Methods in Nonlinear Analysis, 59( 2A), 623-685. doi:10.12775/TMNA.2021.063
    • NLM

      Mota MC, Rezende AC, Schlomiuk D, Vulpe N. Geometric analysis of quadratic differential systems with invariant ellipses [Internet]. Topological Methods in Nonlinear Analysis. 2022 ; 59( 2A): 623-685.[citado 2024 nov. 09 ] Available from: https://doi.org/10.12775/TMNA.2021.063
    • Vancouver

      Mota MC, Rezende AC, Schlomiuk D, Vulpe N. Geometric analysis of quadratic differential systems with invariant ellipses [Internet]. Topological Methods in Nonlinear Analysis. 2022 ; 59( 2A): 623-685.[citado 2024 nov. 09 ] Available from: https://doi.org/10.12775/TMNA.2021.063
  • Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, INVARIANTES

    Versão PublicadaHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOTA, Marcos Coutinho et al. Geometric analysis of quadratic differential systems with invariant ellipses. . São Carlos: ICMC-USP. Disponível em: https://repositorio.usp.br/directbitstream/2845e217-374e-4bf0-a229-283b1ff03372/3005920.pdf. Acesso em: 09 nov. 2024. , 2019
    • APA

      Mota, M. C., Oliveira, R. D. dos S., Rezende, A. C., Schlomiuk, D., & Vulpe, N. (2019). Geometric analysis of quadratic differential systems with invariant ellipses. São Carlos: ICMC-USP. Recuperado de https://repositorio.usp.br/directbitstream/2845e217-374e-4bf0-a229-283b1ff03372/3005920.pdf
    • NLM

      Mota MC, Oliveira RD dos S, Rezende AC, Schlomiuk D, Vulpe N. Geometric analysis of quadratic differential systems with invariant ellipses [Internet]. 2019 ;[citado 2024 nov. 09 ] Available from: https://repositorio.usp.br/directbitstream/2845e217-374e-4bf0-a229-283b1ff03372/3005920.pdf
    • Vancouver

      Mota MC, Oliveira RD dos S, Rezende AC, Schlomiuk D, Vulpe N. Geometric analysis of quadratic differential systems with invariant ellipses [Internet]. 2019 ;[citado 2024 nov. 09 ] Available from: https://repositorio.usp.br/directbitstream/2845e217-374e-4bf0-a229-283b1ff03372/3005920.pdf
  • Unidade: ICMC

    Subjects: TEORIA DAS SINGULARIDADES, TEORIA DAS CATÁSTROFES, TEORIA QUALITATIVA, INVARIANTES

    Versão PublicadaAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Regilene Delazari dos Santos et al. Classification of the family of quadratic differential systems possessing invariant ellipses. . São Carlos: ICMC-USP. Disponível em: http://repositorio.icmc.usp.br//handle/RIICMC/6897. Acesso em: 09 nov. 2024. , 2019
    • APA

      Oliveira, R. D. dos S., Rezende, A. C., Schlomiuk, D., & Vulpe, N. (2019). Classification of the family of quadratic differential systems possessing invariant ellipses. São Carlos: ICMC-USP. Recuperado de http://repositorio.icmc.usp.br//handle/RIICMC/6897
    • NLM

      Oliveira RD dos S, Rezende AC, Schlomiuk D, Vulpe N. Classification of the family of quadratic differential systems possessing invariant ellipses [Internet]. 2019 ;[citado 2024 nov. 09 ] Available from: http://repositorio.icmc.usp.br//handle/RIICMC/6897
    • Vancouver

      Oliveira RD dos S, Rezende AC, Schlomiuk D, Vulpe N. Classification of the family of quadratic differential systems possessing invariant ellipses [Internet]. 2019 ;[citado 2024 nov. 09 ] Available from: http://repositorio.icmc.usp.br//handle/RIICMC/6897
  • Source: Electronic Journal of Differential Equations. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, EQUAÇÕES NÃO LINEARES, SISTEMAS DIFERENCIAIS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Regilene Delazari dos Santos et al. Geometric and algebraic classification of quadratic differential systems with invariant hyperbolas. Electronic Journal of Differential Equations, v. 2017, n. 295, p. 1-122, 2017Tradução . . Disponível em: https://ejde.math.txstate.edu/Volumes/2017/295/oliveira.pdf. Acesso em: 09 nov. 2024.
    • APA

      Oliveira, R. D. dos S., Rezende, A. C., Schlomiuk, D., & Vulpe, N. (2017). Geometric and algebraic classification of quadratic differential systems with invariant hyperbolas. Electronic Journal of Differential Equations, 2017( 295), 1-122. Recuperado de https://ejde.math.txstate.edu/Volumes/2017/295/oliveira.pdf
    • NLM

      Oliveira RD dos S, Rezende AC, Schlomiuk D, Vulpe N. Geometric and algebraic classification of quadratic differential systems with invariant hyperbolas [Internet]. Electronic Journal of Differential Equations. 2017 ; 2017( 295): 1-122.[citado 2024 nov. 09 ] Available from: https://ejde.math.txstate.edu/Volumes/2017/295/oliveira.pdf
    • Vancouver

      Oliveira RD dos S, Rezende AC, Schlomiuk D, Vulpe N. Geometric and algebraic classification of quadratic differential systems with invariant hyperbolas [Internet]. Electronic Journal of Differential Equations. 2017 ; 2017( 295): 1-122.[citado 2024 nov. 09 ] Available from: https://ejde.math.txstate.edu/Volumes/2017/295/oliveira.pdf
  • Unidade: ICMC

    Subjects: SINGULARIDADES, TEORIA QUALITATIVA, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES NÃO LINEARES

    Versão PublicadaHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Regilene Delazari dos Santos et al. Geometric and algebraic classification of quadratic differential systems with invariant hyperbolas. . São Carlos: ICMC-USP. Disponível em: https://repositorio.usp.br/directbitstream/7199618a-9a6f-4b91-afb8-d64ef64a38ab/NOTAS_ICMC_SERIE_MAT_429_2016.pdf. Acesso em: 09 nov. 2024. , 2016
    • APA

      Oliveira, R. D. dos S., Rezende, A. C., Schlomiuk, D., & Vulpe, N. (2016). Geometric and algebraic classification of quadratic differential systems with invariant hyperbolas. São Carlos: ICMC-USP. Recuperado de https://repositorio.usp.br/directbitstream/7199618a-9a6f-4b91-afb8-d64ef64a38ab/NOTAS_ICMC_SERIE_MAT_429_2016.pdf
    • NLM

      Oliveira RD dos S, Rezende AC, Schlomiuk D, Vulpe N. Geometric and algebraic classification of quadratic differential systems with invariant hyperbolas [Internet]. 2016 ;[citado 2024 nov. 09 ] Available from: https://repositorio.usp.br/directbitstream/7199618a-9a6f-4b91-afb8-d64ef64a38ab/NOTAS_ICMC_SERIE_MAT_429_2016.pdf
    • Vancouver

      Oliveira RD dos S, Rezende AC, Schlomiuk D, Vulpe N. Geometric and algebraic classification of quadratic differential systems with invariant hyperbolas [Internet]. 2016 ;[citado 2024 nov. 09 ] Available from: https://repositorio.usp.br/directbitstream/7199618a-9a6f-4b91-afb8-d64ef64a38ab/NOTAS_ICMC_SERIE_MAT_429_2016.pdf
  • Source: Electronic Journal of Differential Equations. Unidade: ICMC

    Subjects: SINGULARIDADES, TEORIA QUALITATIVA

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Regilene Delazari dos Santos e REZENDE, Alex C e VULPE, Nicolae. Family of quadratic differential systems with invariant hyperbolas: a complete classification in the space 'R POT. 12'. Electronic Journal of Differential Equations, v. 2016, n. 162, p. 1-50, 2016Tradução . . Disponível em: http://ejde.math.txstate.edu/. Acesso em: 09 nov. 2024.
    • APA

      Oliveira, R. D. dos S., Rezende, A. C., & Vulpe, N. (2016). Family of quadratic differential systems with invariant hyperbolas: a complete classification in the space 'R POT. 12'. Electronic Journal of Differential Equations, 2016( 162), 1-50. Recuperado de http://ejde.math.txstate.edu/
    • NLM

      Oliveira RD dos S, Rezende AC, Vulpe N. Family of quadratic differential systems with invariant hyperbolas: a complete classification in the space 'R POT. 12' [Internet]. Electronic Journal of Differential Equations. 2016 ; 2016( 162): 1-50.[citado 2024 nov. 09 ] Available from: http://ejde.math.txstate.edu/
    • Vancouver

      Oliveira RD dos S, Rezende AC, Vulpe N. Family of quadratic differential systems with invariant hyperbolas: a complete classification in the space 'R POT. 12' [Internet]. Electronic Journal of Differential Equations. 2016 ; 2016( 162): 1-50.[citado 2024 nov. 09 ] Available from: http://ejde.math.txstate.edu/
  • Unidade: ICMC

    Subjects: SINGULARIDADES, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Versão PublicadaHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Regilene Delazari dos Santos et al. Classification of quadratic differential systems with invariant hyperbolas according to their configurations of invariant hyperbolas and invariant lines. . São Carlos: ICMC-USP. Disponível em: https://repositorio.usp.br/directbitstream/3996c3b1-d880-48ca-8b34-fe038ec72134/BIBLIOTECA_158_Nota%20Serie%20Mat%20420.pdf. Acesso em: 09 nov. 2024. , 2016
    • APA

      Oliveira, R. D. dos S., Rezende, A. C., Schlomiuk, D., & Vulpe, N. (2016). Classification of quadratic differential systems with invariant hyperbolas according to their configurations of invariant hyperbolas and invariant lines. São Carlos: ICMC-USP. Recuperado de https://repositorio.usp.br/directbitstream/3996c3b1-d880-48ca-8b34-fe038ec72134/BIBLIOTECA_158_Nota%20Serie%20Mat%20420.pdf
    • NLM

      Oliveira RD dos S, Rezende AC, Schlomiuk D, Vulpe N. Classification of quadratic differential systems with invariant hyperbolas according to their configurations of invariant hyperbolas and invariant lines [Internet]. 2016 ;[citado 2024 nov. 09 ] Available from: https://repositorio.usp.br/directbitstream/3996c3b1-d880-48ca-8b34-fe038ec72134/BIBLIOTECA_158_Nota%20Serie%20Mat%20420.pdf
    • Vancouver

      Oliveira RD dos S, Rezende AC, Schlomiuk D, Vulpe N. Classification of quadratic differential systems with invariant hyperbolas according to their configurations of invariant hyperbolas and invariant lines [Internet]. 2016 ;[citado 2024 nov. 09 ] Available from: https://repositorio.usp.br/directbitstream/3996c3b1-d880-48ca-8b34-fe038ec72134/BIBLIOTECA_158_Nota%20Serie%20Mat%20420.pdf

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024