Filtros : "México" "PAVA, JAIME ANGULO" Removidos: "IFSC006" "ENSINO E APRENDIZAGEM" "Deodhar, C" "FMRP-RFI" "ESALQ" Limpar

Filtros



Limitar por data


  • Fonte: Journal of Evolution Equations. Unidade: IME

    Assuntos: EQUAÇÕES DIFERENCIAIS PARCIAIS, SOLUÇÕES PERIÓDICAS, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ÁLVAREZ, Enrique e PAVA, Jaime Angulo e PLAZA, Ramón G. Orbital instability of periodic waves for scalar viscous balance laws. Journal of Evolution Equations, v. 24, n. artigo 7, p. 1-35, 2024Tradução . . Disponível em: https://doi.org/10.1007/s00028-023-00936-5. Acesso em: 13 nov. 2024.
    • APA

      Álvarez, E., Pava, J. A., & Plaza, R. G. (2024). Orbital instability of periodic waves for scalar viscous balance laws. Journal of Evolution Equations, 24( artigo 7), 1-35. doi:10.1007/s00028-023-00936-5
    • NLM

      Álvarez E, Pava JA, Plaza RG. Orbital instability of periodic waves for scalar viscous balance laws [Internet]. Journal of Evolution Equations. 2024 ; 24( artigo 7): 1-35.[citado 2024 nov. 13 ] Available from: https://doi.org/10.1007/s00028-023-00936-5
    • Vancouver

      Álvarez E, Pava JA, Plaza RG. Orbital instability of periodic waves for scalar viscous balance laws [Internet]. Journal of Evolution Equations. 2024 ; 24( artigo 7): 1-35.[citado 2024 nov. 13 ] Available from: https://doi.org/10.1007/s00028-023-00936-5
  • Fonte: Mathematische Zeitschrift. Unidade: IME

    Assuntos: SOLITONS, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Versão AceitaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PAVA, Jaime Angulo e PLAZA, Ramón G. Unstable kink and anti-kink profile for the sine-Gordon equation on a Y -junction graph. Mathematische Zeitschrift, v. 300, n. 3, p. 2885-2915, 2022Tradução . . Disponível em: https://doi.org/10.1007/s00209-021-02899-0. Acesso em: 13 nov. 2024.
    • APA

      Pava, J. A., & Plaza, R. G. (2022). Unstable kink and anti-kink profile for the sine-Gordon equation on a Y -junction graph. Mathematische Zeitschrift, 300( 3), 2885-2915. doi:10.1007/s00209-021-02899-0
    • NLM

      Pava JA, Plaza RG. Unstable kink and anti-kink profile for the sine-Gordon equation on a Y -junction graph [Internet]. Mathematische Zeitschrift. 2022 ; 300( 3): 2885-2915.[citado 2024 nov. 13 ] Available from: https://doi.org/10.1007/s00209-021-02899-0
    • Vancouver

      Pava JA, Plaza RG. Unstable kink and anti-kink profile for the sine-Gordon equation on a Y -junction graph [Internet]. Mathematische Zeitschrift. 2022 ; 300( 3): 2885-2915.[citado 2024 nov. 13 ] Available from: https://doi.org/10.1007/s00209-021-02899-0
  • Fonte: Journal of Nonlinear Science. Unidade: IME

    Assuntos: SOLITONS, EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PAVA, Jaime Angulo e PLAZA, Ramón G. Instability of static solutions of the sine-Gordon equation on a Y-junction graph with δ-interaction. Journal of Nonlinear Science, v. 31, n. 3, 2021Tradução . . Disponível em: https://doi.org/10.1007/s00332-021-09711-7. Acesso em: 13 nov. 2024.
    • APA

      Pava, J. A., & Plaza, R. G. (2021). Instability of static solutions of the sine-Gordon equation on a Y-junction graph with δ-interaction. Journal of Nonlinear Science, 31( 3). doi:10.1007/s00332-021-09711-7
    • NLM

      Pava JA, Plaza RG. Instability of static solutions of the sine-Gordon equation on a Y-junction graph with δ-interaction [Internet]. Journal of Nonlinear Science. 2021 ; 31( 3):[citado 2024 nov. 13 ] Available from: https://doi.org/10.1007/s00332-021-09711-7
    • Vancouver

      Pava JA, Plaza RG. Instability of static solutions of the sine-Gordon equation on a Y-junction graph with δ-interaction [Internet]. Journal of Nonlinear Science. 2021 ; 31( 3):[citado 2024 nov. 13 ] Available from: https://doi.org/10.1007/s00332-021-09711-7
  • Fonte: Physica D: Nonlinear Phenomena. Unidade: IME

    Assuntos: SOLITONS, EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS, OPERADORES DIFERENCIAIS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PAVA, Jaime Angulo e PLAZA, Ramón G. Instability theory of kink and anti-kink profiles for the sine-Gordon equation on Josephson tricrystal boundaries. Physica D: Nonlinear Phenomena, v. 427, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.physd.2021.133020. Acesso em: 13 nov. 2024.
    • APA

      Pava, J. A., & Plaza, R. G. (2021). Instability theory of kink and anti-kink profiles for the sine-Gordon equation on Josephson tricrystal boundaries. Physica D: Nonlinear Phenomena, 427. doi:10.1016/j.physd.2021.133020
    • NLM

      Pava JA, Plaza RG. Instability theory of kink and anti-kink profiles for the sine-Gordon equation on Josephson tricrystal boundaries [Internet]. Physica D: Nonlinear Phenomena. 2021 ; 427[citado 2024 nov. 13 ] Available from: https://doi.org/10.1016/j.physd.2021.133020
    • Vancouver

      Pava JA, Plaza RG. Instability theory of kink and anti-kink profiles for the sine-Gordon equation on Josephson tricrystal boundaries [Internet]. Physica D: Nonlinear Phenomena. 2021 ; 427[citado 2024 nov. 13 ] Available from: https://doi.org/10.1016/j.physd.2021.133020
  • Fonte: Journal of Mathematical Physics. Unidade: IME

    Assunto: MECÂNICA QUÂNTICA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PAVA, Jaime Angulo e HERNÁNDEZ MELO, César A e PLAZA, Ramón G. Orbital stability of standing waves for the nonlinear Schrödinger equation with attractive delta potential and double power repulsive nonlinearity. Journal of Mathematical Physics, v. 60, n. 7, 2019Tradução . . Disponível em: https://doi.org/10.1063/1.5097417. Acesso em: 13 nov. 2024.
    • APA

      Pava, J. A., Hernández Melo, C. A., & Plaza, R. G. (2019). Orbital stability of standing waves for the nonlinear Schrödinger equation with attractive delta potential and double power repulsive nonlinearity. Journal of Mathematical Physics, 60( 7). doi:10.1063/1.5097417
    • NLM

      Pava JA, Hernández Melo CA, Plaza RG. Orbital stability of standing waves for the nonlinear Schrödinger equation with attractive delta potential and double power repulsive nonlinearity [Internet]. Journal of Mathematical Physics. 2019 ; 60( 7):[citado 2024 nov. 13 ] Available from: https://doi.org/10.1063/1.5097417
    • Vancouver

      Pava JA, Hernández Melo CA, Plaza RG. Orbital stability of standing waves for the nonlinear Schrödinger equation with attractive delta potential and double power repulsive nonlinearity [Internet]. Journal of Mathematical Physics. 2019 ; 60( 7):[citado 2024 nov. 13 ] Available from: https://doi.org/10.1063/1.5097417
  • Fonte: Studies in Applied Mathematics. Unidade: IME

    Assuntos: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS HIPERBÓLICAS, SOLUÇÕES PERIÓDICAS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PAVA, Jaime Angulo e PLAZA, Ramón G. Transverse orbital stability of periodic traveling waves for nonlinear Klein-Gordon equations. Studies in Applied Mathematics, v. 137, n. 4, p. 473-501, 2016Tradução . . Disponível em: https://doi.org/10.1111/sapm.12131. Acesso em: 13 nov. 2024.
    • APA

      Pava, J. A., & Plaza, R. G. (2016). Transverse orbital stability of periodic traveling waves for nonlinear Klein-Gordon equations. Studies in Applied Mathematics, 137( 4), 473-501. doi:10.1111/sapm.12131
    • NLM

      Pava JA, Plaza RG. Transverse orbital stability of periodic traveling waves for nonlinear Klein-Gordon equations [Internet]. Studies in Applied Mathematics. 2016 ; 137( 4): 473-501.[citado 2024 nov. 13 ] Available from: https://doi.org/10.1111/sapm.12131
    • Vancouver

      Pava JA, Plaza RG. Transverse orbital stability of periodic traveling waves for nonlinear Klein-Gordon equations [Internet]. Studies in Applied Mathematics. 2016 ; 137( 4): 473-501.[citado 2024 nov. 13 ] Available from: https://doi.org/10.1111/sapm.12131

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2024