Filtros : "Brasil" "Tahzibi, Ali" Removidos: "2012" "Financiado pela Fundação Calouste Gulbenkian" Limpar

Filtros



Refine with date range


  • Source: Ergodic Theory and Dynamical Systems. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COSTA, José Santana Campos e TAHZIBI, Ali. Rigidity of Lyapunov exponents for derived from Anosov diffeomorphisms. Ergodic Theory and Dynamical Systems, 2024Tradução . . Disponível em: https://doi.org/10.1017/etds.2024.59. Acesso em: 10 nov. 2024.
    • APA

      Costa, J. S. C., & Tahzibi, A. (2024). Rigidity of Lyapunov exponents for derived from Anosov diffeomorphisms. Ergodic Theory and Dynamical Systems. doi:10.1017/etds.2024.59
    • NLM

      Costa JSC, Tahzibi A. Rigidity of Lyapunov exponents for derived from Anosov diffeomorphisms [Internet]. Ergodic Theory and Dynamical Systems. 2024 ;[citado 2024 nov. 10 ] Available from: https://doi.org/10.1017/etds.2024.59
    • Vancouver

      Costa JSC, Tahzibi A. Rigidity of Lyapunov exponents for derived from Anosov diffeomorphisms [Internet]. Ergodic Theory and Dynamical Systems. 2024 ;[citado 2024 nov. 10 ] Available from: https://doi.org/10.1017/etds.2024.59
  • Source: Mathematische Zeitschrift. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, DIFEOMORFISMOS, SISTEMAS DINÂMICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ROCHA, Joás Elias dos Santos e TAHZIBI, Ali. On the number of ergodic measures of maximal entropy for partially hyperbolic diffeomorphisms with compact center leaves. Mathematische Zeitschrift, v. 301, n. 1, p. 471-484, 2022Tradução . . Disponível em: https://doi.org/10.1007/s00209-021-02925-1. Acesso em: 10 nov. 2024.
    • APA

      Rocha, J. E. dos S., & Tahzibi, A. (2022). On the number of ergodic measures of maximal entropy for partially hyperbolic diffeomorphisms with compact center leaves. Mathematische Zeitschrift, 301( 1), 471-484. doi:10.1007/s00209-021-02925-1
    • NLM

      Rocha JE dos S, Tahzibi A. On the number of ergodic measures of maximal entropy for partially hyperbolic diffeomorphisms with compact center leaves [Internet]. Mathematische Zeitschrift. 2022 ; 301( 1): 471-484.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1007/s00209-021-02925-1
    • Vancouver

      Rocha JE dos S, Tahzibi A. On the number of ergodic measures of maximal entropy for partially hyperbolic diffeomorphisms with compact center leaves [Internet]. Mathematische Zeitschrift. 2022 ; 301( 1): 471-484.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1007/s00209-021-02925-1
  • Source: Portugaliae Mathematica. Unidade: ICMC

    Subjects: DINÂMICA TOPOLÓGICA, TEORIA ERGÓDICA, DIFEOMORFISMOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRONZI, Marcus Augusto e TAHZIBI, Ali. Homoclinic tangency and variation of entropy. Portugaliae Mathematica, v. 77, n. 3-4, p. 383-398, 2020Tradução . . Disponível em: https://doi.org/10.4171/PM/2055. Acesso em: 10 nov. 2024.
    • APA

      Bronzi, M. A., & Tahzibi, A. (2020). Homoclinic tangency and variation of entropy. Portugaliae Mathematica, 77( 3-4), 383-398. doi:10.4171/PM/2055
    • NLM

      Bronzi MA, Tahzibi A. Homoclinic tangency and variation of entropy [Internet]. Portugaliae Mathematica. 2020 ; 77( 3-4): 383-398.[citado 2024 nov. 10 ] Available from: https://doi.org/10.4171/PM/2055
    • Vancouver

      Bronzi MA, Tahzibi A. Homoclinic tangency and variation of entropy [Internet]. Portugaliae Mathematica. 2020 ; 77( 3-4): 383-398.[citado 2024 nov. 10 ] Available from: https://doi.org/10.4171/PM/2055
  • Source: Transactions of the American Mathematical Society. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TAHZIBI, Ali e YANG, Jiagang. Invariance principle and rigidity of high entropy measures. Transactions of the American Mathematical Society, v. 371, n. 2, p. 1231-1251, 2019Tradução . . Disponível em: https://doi.org/10.1090/tran/7278. Acesso em: 10 nov. 2024.
    • APA

      Tahzibi, A., & Yang, J. (2019). Invariance principle and rigidity of high entropy measures. Transactions of the American Mathematical Society, 371( 2), 1231-1251. doi:10.1090/tran/7278
    • NLM

      Tahzibi A, Yang J. Invariance principle and rigidity of high entropy measures [Internet]. Transactions of the American Mathematical Society. 2019 ; 371( 2): 1231-1251.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1090/tran/7278
    • Vancouver

      Tahzibi A, Yang J. Invariance principle and rigidity of high entropy measures [Internet]. Transactions of the American Mathematical Society. 2019 ; 371( 2): 1231-1251.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1090/tran/7278
  • Source: Proceedings of the American Mathematical Society. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MICENA, Fernando e TAHZIBI, Ali. A note on rigidity of Anosov diffeomorphisms of the three torus. Proceedings of the American Mathematical Society, v. 147, n. 6, p. 2453-2463, 2019Tradução . . Disponível em: https://doi.org/10.1090/proc/14422. Acesso em: 10 nov. 2024.
    • APA

      Micena, F., & Tahzibi, A. (2019). A note on rigidity of Anosov diffeomorphisms of the three torus. Proceedings of the American Mathematical Society, 147( 6), 2453-2463. doi:10.1090/proc/14422
    • NLM

      Micena F, Tahzibi A. A note on rigidity of Anosov diffeomorphisms of the three torus [Internet]. Proceedings of the American Mathematical Society. 2019 ; 147( 6): 2453-2463.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1090/proc/14422
    • Vancouver

      Micena F, Tahzibi A. A note on rigidity of Anosov diffeomorphisms of the three torus [Internet]. Proceedings of the American Mathematical Society. 2019 ; 147( 6): 2453-2463.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1090/proc/14422
  • Source: Advances in Mathematics. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA, DIFEOMORFISMOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PONCE, Gabriel e TAHZIBI, Ali e VARÃO, R. On the Bernoulli property for certain partially hyperbolic diffeomorphisms. Advances in Mathematics, v. 329, p. 329-360, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.aim.2018.02.019. Acesso em: 10 nov. 2024.
    • APA

      Ponce, G., Tahzibi, A., & Varão, R. (2018). On the Bernoulli property for certain partially hyperbolic diffeomorphisms. Advances in Mathematics, 329, 329-360. doi:10.1016/j.aim.2018.02.019
    • NLM

      Ponce G, Tahzibi A, Varão R. On the Bernoulli property for certain partially hyperbolic diffeomorphisms [Internet]. Advances in Mathematics. 2018 ; 329 329-360.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1016/j.aim.2018.02.019
    • Vancouver

      Ponce G, Tahzibi A, Varão R. On the Bernoulli property for certain partially hyperbolic diffeomorphisms [Internet]. Advances in Mathematics. 2018 ; 329 329-360.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1016/j.aim.2018.02.019
  • Source: Journal of Statistical Physics. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MEHDIPOUR, P e TAHZIBI, Ali. SRB measures and homoclinic relation for endomorphisms. Journal of Statistical Physics, v. 163, n. 1, p. 139-155, 2016Tradução . . Disponível em: https://doi.org/10.1007/s10955-016-1458-3. Acesso em: 10 nov. 2024.
    • APA

      Mehdipour, P., & Tahzibi, A. (2016). SRB measures and homoclinic relation for endomorphisms. Journal of Statistical Physics, 163( 1), 139-155. doi:10.1007/s10955-016-1458-3
    • NLM

      Mehdipour P, Tahzibi A. SRB measures and homoclinic relation for endomorphisms [Internet]. Journal of Statistical Physics. 2016 ; 163( 1): 139-155.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1007/s10955-016-1458-3
    • Vancouver

      Mehdipour P, Tahzibi A. SRB measures and homoclinic relation for endomorphisms [Internet]. Journal of Statistical Physics. 2016 ; 163( 1): 139-155.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1007/s10955-016-1458-3
  • Source: Fundamenta Mathematicae. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MICENA, Fernando e TAHZIBI, Ali. On the unstable directions and Lyapunov exponents of Anosov endomorphisms. Fundamenta Mathematicae, v. 235, p. 37-48, 2016Tradução . . Disponível em: https://doi.org/10.4064/fm92-10-2015. Acesso em: 10 nov. 2024.
    • APA

      Micena, F., & Tahzibi, A. (2016). On the unstable directions and Lyapunov exponents of Anosov endomorphisms. Fundamenta Mathematicae, 235, 37-48. doi:10.4064/fm92-10-2015
    • NLM

      Micena F, Tahzibi A. On the unstable directions and Lyapunov exponents of Anosov endomorphisms [Internet]. Fundamenta Mathematicae. 2016 ; 235 37-48.[citado 2024 nov. 10 ] Available from: https://doi.org/10.4064/fm92-10-2015
    • Vancouver

      Micena F, Tahzibi A. On the unstable directions and Lyapunov exponents of Anosov endomorphisms [Internet]. Fundamenta Mathematicae. 2016 ; 235 37-48.[citado 2024 nov. 10 ] Available from: https://doi.org/10.4064/fm92-10-2015
  • Source: Discrete and Continuous Dynamical Systems. Unidade: ICMC

    Assunto: SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SMANIA, Daniel e TAHZIBI, Ali e VIANA, Marcelo. This special issue of DCDS.. [Editorial]. Discrete and Continuous Dynamical Systems. Springfield: Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo. Disponível em: https://doi.org/10.3934/dcds.2007.17.2i. Acesso em: 10 nov. 2024. , 2007
    • APA

      Smania, D., Tahzibi, A., & Viana, M. (2007). This special issue of DCDS.. [Editorial]. Discrete and Continuous Dynamical Systems. Springfield: Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo. doi:10.3934/dcds.2007.17.2i
    • NLM

      Smania D, Tahzibi A, Viana M. This special issue of DCDS.. [Editorial] [Internet]. Discrete and Continuous Dynamical Systems. 2007 ; 17( 2): i-ii.[citado 2024 nov. 10 ] Available from: https://doi.org/10.3934/dcds.2007.17.2i
    • Vancouver

      Smania D, Tahzibi A, Viana M. This special issue of DCDS.. [Editorial] [Internet]. Discrete and Continuous Dynamical Systems. 2007 ; 17( 2): i-ii.[citado 2024 nov. 10 ] Available from: https://doi.org/10.3934/dcds.2007.17.2i

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024