Filtros : "Alemanha" "Rússia" Removido: "Estados Unidos" Limpar

Filtros



Refine with date range


  • Source: Doklady Physics. Unidade: IME

    Subjects: TURBULÊNCIA, EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GREBENEV, Vladimir e GRICHKOV, Alexandre e OBERLACK, Martin. Symmetry of the Lundgren-Monin-Novikov equation for the probability distribution of the vortex field. Doklady Physics, v. 68, n. 3, p. 92-96, 2023Tradução . . Disponível em: https://doi.org/10.1134/S1028335823010044. Acesso em: 01 nov. 2024.
    • APA

      Grebenev, V., Grichkov, A., & Oberlack, M. (2023). Symmetry of the Lundgren-Monin-Novikov equation for the probability distribution of the vortex field. Doklady Physics, 68( 3), 92-96. doi:10.1134/S1028335823010044
    • NLM

      Grebenev V, Grichkov A, Oberlack M. Symmetry of the Lundgren-Monin-Novikov equation for the probability distribution of the vortex field [Internet]. Doklady Physics. 2023 ; 68( 3): 92-96.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1134/S1028335823010044
    • Vancouver

      Grebenev V, Grichkov A, Oberlack M. Symmetry of the Lundgren-Monin-Novikov equation for the probability distribution of the vortex field [Internet]. Doklady Physics. 2023 ; 68( 3): 92-96.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1134/S1028335823010044
  • Source: Moscow Mathematical Journal. Unidade: IME

    Assunto: ESPAÇOS DE BANACH

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PECHERSKY, Eugene et al. Large emission regime in mean field luminescence. Moscow Mathematical Journal, v. 19, n. 1, p. 107-120, 2019Tradução . . Disponível em: https://doi.org/10.17323/1609-4514-2019-19-1-107-120. Acesso em: 01 nov. 2024.
    • APA

      Pechersky, E., Pirogov, S., Schultz, G. M., Vladimirov, A., & Iambartsev, A. (2019). Large emission regime in mean field luminescence. Moscow Mathematical Journal, 19( 1), 107-120. doi:10.17323/1609-4514-2019-19-1-107-120
    • NLM

      Pechersky E, Pirogov S, Schultz GM, Vladimirov A, Iambartsev A. Large emission regime in mean field luminescence [Internet]. Moscow Mathematical Journal. 2019 ; 19( 1): 107-120.[citado 2024 nov. 01 ] Available from: https://doi.org/10.17323/1609-4514-2019-19-1-107-120
    • Vancouver

      Pechersky E, Pirogov S, Schultz GM, Vladimirov A, Iambartsev A. Large emission regime in mean field luminescence [Internet]. Moscow Mathematical Journal. 2019 ; 19( 1): 107-120.[citado 2024 nov. 01 ] Available from: https://doi.org/10.17323/1609-4514-2019-19-1-107-120
  • Source: Markov Processes and Related Fields. Unidade: IME

    Assunto: CADEIAS DE MARKOV

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MACHADO, Fábio Prates e MASHURIAN, H. e MATZINGER, H. CLT for the proportion of infected individuals for an epidemic model on a complete graph. Markov Processes and Related Fields, v. 17, n. 2, p. 209-224, 2011Tradução . . Acesso em: 01 nov. 2024.
    • APA

      Machado, F. P., Mashurian, H., & Matzinger, H. (2011). CLT for the proportion of infected individuals for an epidemic model on a complete graph. Markov Processes and Related Fields, 17( 2), 209-224.
    • NLM

      Machado FP, Mashurian H, Matzinger H. CLT for the proportion of infected individuals for an epidemic model on a complete graph. Markov Processes and Related Fields. 2011 ; 17( 2): 209-224.[citado 2024 nov. 01 ]
    • Vancouver

      Machado FP, Mashurian H, Matzinger H. CLT for the proportion of infected individuals for an epidemic model on a complete graph. Markov Processes and Related Fields. 2011 ; 17( 2): 209-224.[citado 2024 nov. 01 ]
  • Source: Proceedings of the Steklov Institute of Mathematics. Unidade: IME

    Assunto: TOPOLOGIA ALGÉBRICA

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BOGATYI, Semen A. e GONÇALVES, Daciberg Lima e ZIESCHANG, Heiner. Coincidence theory: the minimizing problem. Proceedings of the Steklov Institute of Mathematics, v. 225, n. 2, p. 52-86, 1999Tradução . . Disponível em: http://mi.mathnet.ru/eng/tm713. Acesso em: 01 nov. 2024.
    • APA

      Bogatyi, S. A., Gonçalves, D. L., & Zieschang, H. (1999). Coincidence theory: the minimizing problem. Proceedings of the Steklov Institute of Mathematics, 225( 2), 52-86. Recuperado de http://mi.mathnet.ru/eng/tm713
    • NLM

      Bogatyi SA, Gonçalves DL, Zieschang H. Coincidence theory: the minimizing problem [Internet]. Proceedings of the Steklov Institute of Mathematics. 1999 ; 225( 2): 52-86.[citado 2024 nov. 01 ] Available from: http://mi.mathnet.ru/eng/tm713
    • Vancouver

      Bogatyi SA, Gonçalves DL, Zieschang H. Coincidence theory: the minimizing problem [Internet]. Proceedings of the Steklov Institute of Mathematics. 1999 ; 225( 2): 52-86.[citado 2024 nov. 01 ] Available from: http://mi.mathnet.ru/eng/tm713

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024