Filtros : "Índia" "IFSC" Removidos: "2002" "2023" "Financiamento FWF" Limpar

Filtros



Refine with date range


  • Source: Current Science. Unidade: IFSC

    Subjects: APRENDIZADO COMPUTACIONAL, AVALIAÇÃO DE TECNOLOGIAS DA SAÚDE

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOSWAMI, Anamitra et al. Design and development of robust and precision personalized medicine. [Opinion]. Current Science. Bangalore: Instituto de Física de São Carlos, Universidade de São Paulo. Disponível em: https://doi.org/10.1126/science.adm9218. Acesso em: 04 set. 2024. , 2024
    • APA

      Goswami, A., Sil, M., Ratnaparkhi, P., Goswami, A., Mukherjee, N., & Polikarpov, I. (2024). Design and development of robust and precision personalized medicine. [Opinion]. Current Science. Bangalore: Instituto de Física de São Carlos, Universidade de São Paulo. doi:10.1126/science.adm9218
    • NLM

      Goswami A, Sil M, Ratnaparkhi P, Goswami A, Mukherjee N, Polikarpov I. Design and development of robust and precision personalized medicine. [Opinion] [Internet]. Current Science. 2024 ; 126( 1): 149-150.[citado 2024 set. 04 ] Available from: https://doi.org/10.1126/science.adm9218
    • Vancouver

      Goswami A, Sil M, Ratnaparkhi P, Goswami A, Mukherjee N, Polikarpov I. Design and development of robust and precision personalized medicine. [Opinion] [Internet]. Current Science. 2024 ; 126( 1): 149-150.[citado 2024 set. 04 ] Available from: https://doi.org/10.1126/science.adm9218
  • Source: ChemistrySelect. Unidade: IFSC

    Subjects: FOTOCATÁLISE, IRRADIAÇÃO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALNAGGAR, Gubran et al. Selective photocatalytic CO2 reduction through plasmonic Z-scheme Ag-Bi2O3-ZnO heterostructures. ChemistrySelect, v. 9, n. 19, p. e202400577 + supporting information, 2024Tradução . . Disponível em: https://doi.org/10.1002/slct.202400577. Acesso em: 04 set. 2024.
    • APA

      Alnaggar, G., Alkanad, K., Bajiri, M. A., Krishnappagowda, L. N., Ananda, S., & Drmosh, Q. (2024). Selective photocatalytic CO2 reduction through plasmonic Z-scheme Ag-Bi2O3-ZnO heterostructures. ChemistrySelect, 9( 19), e202400577 + supporting information. doi:10.1002/slct.202400577
    • NLM

      Alnaggar G, Alkanad K, Bajiri MA, Krishnappagowda LN, Ananda S, Drmosh Q. Selective photocatalytic CO2 reduction through plasmonic Z-scheme Ag-Bi2O3-ZnO heterostructures [Internet]. ChemistrySelect. 2024 ; 9( 19): e202400577 + supporting information.[citado 2024 set. 04 ] Available from: https://doi.org/10.1002/slct.202400577
    • Vancouver

      Alnaggar G, Alkanad K, Bajiri MA, Krishnappagowda LN, Ananda S, Drmosh Q. Selective photocatalytic CO2 reduction through plasmonic Z-scheme Ag-Bi2O3-ZnO heterostructures [Internet]. ChemistrySelect. 2024 ; 9( 19): e202400577 + supporting information.[citado 2024 set. 04 ] Available from: https://doi.org/10.1002/slct.202400577
  • Source: Journal of Medical Pharmaceutical and Allied Sciences. Unidade: IFSC

    Subjects: BIOTECNOLOGIA, ENVELHECIMENTO, CNIDARIA, FÁRMACOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOSWAMI, Anamitra et al. Decoding the aging nexus: unravelling genetic networks and pharmacological strategies for lifespan extension and the methuselah paradox. Journal of Medical Pharmaceutical and Allied Sciences, v. 13, n. Ja 2024, p. 6372-6376, 2024Tradução . . Disponível em: https://doi.org/10.55522/jmpas.V13I1.6243. Acesso em: 04 set. 2024.
    • APA

      Goswami, A., Mukherjee, N., Sil, M., Ghosh, A., Ratnaparkhi, P., Goswami, A., & Polikarpov, I. (2024). Decoding the aging nexus: unravelling genetic networks and pharmacological strategies for lifespan extension and the methuselah paradox. Journal of Medical Pharmaceutical and Allied Sciences, 13( Ja 2024), 6372-6376. doi:10.55522/jmpas.V13I1.6243
    • NLM

      Goswami A, Mukherjee N, Sil M, Ghosh A, Ratnaparkhi P, Goswami A, Polikarpov I. Decoding the aging nexus: unravelling genetic networks and pharmacological strategies for lifespan extension and the methuselah paradox [Internet]. Journal of Medical Pharmaceutical and Allied Sciences. 2024 ; 13( Ja 2024): 6372-6376.[citado 2024 set. 04 ] Available from: https://doi.org/10.55522/jmpas.V13I1.6243
    • Vancouver

      Goswami A, Mukherjee N, Sil M, Ghosh A, Ratnaparkhi P, Goswami A, Polikarpov I. Decoding the aging nexus: unravelling genetic networks and pharmacological strategies for lifespan extension and the methuselah paradox [Internet]. Journal of Medical Pharmaceutical and Allied Sciences. 2024 ; 13( Ja 2024): 6372-6376.[citado 2024 set. 04 ] Available from: https://doi.org/10.55522/jmpas.V13I1.6243
  • Source: Physical Review A. Unidade: IFSC

    Subjects: ÓPTICA, CONDENSADO DE BOSE-EINSTEIN, SUPERFLUIDEZ

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      THUDIYANGAL, Mithun et al. Stationary solitary waves in F = 1 spin-orbit-coupled Bose-Einstein condensates. Physical Review A, v. 109, n. 2, p. 023328-1-023328-17, 2024Tradução . . Disponível em: https://doi.org/10.1103/PhysRevA.109.023328. Acesso em: 04 set. 2024.
    • APA

      Thudiyangal, M., Fritsch, A. R., Koutsokostas, G., Frantzeskakis, D., Spielman, I. B., & Kevrekidis, P. G. (2024). Stationary solitary waves in F = 1 spin-orbit-coupled Bose-Einstein condensates. Physical Review A, 109( 2), 023328-1-023328-17. doi:10.1103/PhysRevA.109.023328
    • NLM

      Thudiyangal M, Fritsch AR, Koutsokostas G, Frantzeskakis D, Spielman IB, Kevrekidis PG. Stationary solitary waves in F = 1 spin-orbit-coupled Bose-Einstein condensates [Internet]. Physical Review A. 2024 ; 109( 2): 023328-1-023328-17.[citado 2024 set. 04 ] Available from: https://doi.org/10.1103/PhysRevA.109.023328
    • Vancouver

      Thudiyangal M, Fritsch AR, Koutsokostas G, Frantzeskakis D, Spielman IB, Kevrekidis PG. Stationary solitary waves in F = 1 spin-orbit-coupled Bose-Einstein condensates [Internet]. Physical Review A. 2024 ; 109( 2): 023328-1-023328-17.[citado 2024 set. 04 ] Available from: https://doi.org/10.1103/PhysRevA.109.023328
  • Unidade: IFSC

    Subjects: NANOTECNOLOGIA, BIOLOGIA, MEDICINA

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      Journal of Biomedical Nanotechnology. . Valencia: American Scientific Publishers - ASP. . Acesso em: 04 set. 2024. , 2022
    • APA

      Journal of Biomedical Nanotechnology. (2022). Journal of Biomedical Nanotechnology. Valencia: American Scientific Publishers - ASP.
    • NLM

      Journal of Biomedical Nanotechnology. 2022 ;[citado 2024 set. 04 ]
    • Vancouver

      Journal of Biomedical Nanotechnology. 2022 ;[citado 2024 set. 04 ]
  • Source: Acta Materialia. Unidade: IFSC

    Subjects: VIDRO, PROPRIEDADES DOS MATERIAIS, ÓPTICA NÃO LINEAR

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KESHRI, Shweta R. et al. Elucidating the influence of structure and Ag+-Na+ ion-exchange on crack-resistance and ionic conductivity of Na3Al1.8Si1.65P1.8O12 glass electrolyte. Acta Materialia, v. 227, p. 117745-1-117745-12, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.actamat.2022.117745. Acesso em: 04 set. 2024.
    • APA

      Keshri, S. R., Mandal, I., Ganisetti, S., Kasimuthumaniyan, S., Kumar, R., Gaddam, A., et al. (2022). Elucidating the influence of structure and Ag+-Na+ ion-exchange on crack-resistance and ionic conductivity of Na3Al1.8Si1.65P1.8O12 glass electrolyte. Acta Materialia, 227, 117745-1-117745-12. doi:10.1016/j.actamat.2022.117745
    • NLM

      Keshri SR, Mandal I, Ganisetti S, Kasimuthumaniyan S, Kumar R, Gaddam A, Shelke A, Ajithkumar TG, Gosvami NN, Krishnan NMA, Allu AR. Elucidating the influence of structure and Ag+-Na+ ion-exchange on crack-resistance and ionic conductivity of Na3Al1.8Si1.65P1.8O12 glass electrolyte [Internet]. Acta Materialia. 2022 ; 227 117745-1-117745-12.[citado 2024 set. 04 ] Available from: https://doi.org/10.1016/j.actamat.2022.117745
    • Vancouver

      Keshri SR, Mandal I, Ganisetti S, Kasimuthumaniyan S, Kumar R, Gaddam A, Shelke A, Ajithkumar TG, Gosvami NN, Krishnan NMA, Allu AR. Elucidating the influence of structure and Ag+-Na+ ion-exchange on crack-resistance and ionic conductivity of Na3Al1.8Si1.65P1.8O12 glass electrolyte [Internet]. Acta Materialia. 2022 ; 227 117745-1-117745-12.[citado 2024 set. 04 ] Available from: https://doi.org/10.1016/j.actamat.2022.117745
  • Source: BioEnergy Research. Unidades: EEL, IFSC

    Subjects: ETANOL, SACARIFICAÇÃO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HANS, Meenu et al. Optimization of Dilute Acid Pretreatment for Enhanced Release of Fermentable Sugars from Sugarcane Bagasse and Validation by Biophysical Characterization. BioEnergy Research, v. 16, p. 416-434, 2022Tradução . . Disponível em: https://doi.org/10.1007/s12155-022-10474-6. Acesso em: 04 set. 2024.
    • APA

      Hans, M., Pellegrini, V. de O. A., Filgueiras, J. G., Azevêdo, E. R. de, Guimarães, F. E. G., Chandel, A. K., et al. (2022). Optimization of Dilute Acid Pretreatment for Enhanced Release of Fermentable Sugars from Sugarcane Bagasse and Validation by Biophysical Characterization. BioEnergy Research, 16, 416-434. doi:10.1007/s12155-022-10474-6
    • NLM

      Hans M, Pellegrini V de OA, Filgueiras JG, Azevêdo ER de, Guimarães FEG, Chandel AK, Chadha BS, Kumar S. Optimization of Dilute Acid Pretreatment for Enhanced Release of Fermentable Sugars from Sugarcane Bagasse and Validation by Biophysical Characterization [Internet]. BioEnergy Research. 2022 ;16 416-434.[citado 2024 set. 04 ] Available from: https://doi.org/10.1007/s12155-022-10474-6
    • Vancouver

      Hans M, Pellegrini V de OA, Filgueiras JG, Azevêdo ER de, Guimarães FEG, Chandel AK, Chadha BS, Kumar S. Optimization of Dilute Acid Pretreatment for Enhanced Release of Fermentable Sugars from Sugarcane Bagasse and Validation by Biophysical Characterization [Internet]. BioEnergy Research. 2022 ;16 416-434.[citado 2024 set. 04 ] Available from: https://doi.org/10.1007/s12155-022-10474-6
  • Source: European Physical Journal Special Topics. Unidade: IFSC

    Subjects: FOTÔNICA, ELETRÔNICA, ÓPTICA NÃO LINEAR

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AHMED, Md Soif et al. Nonlinear optical techniques for characterization of organic electronic and photonic devices. European Physical Journal Special Topics, v. 231, n. 4, p. 695-711, 2022Tradução . . Disponível em: https://doi.org/10.1140/epjs/s11734-021-00391-8. Acesso em: 04 set. 2024.
    • APA

      Ahmed, M. S., Biswas, C., Miranda, P. B., & Raavi, S. S. K. (2022). Nonlinear optical techniques for characterization of organic electronic and photonic devices. European Physical Journal Special Topics, 231( 4), 695-711. doi:10.1140/epjs/s11734-021-00391-8
    • NLM

      Ahmed MS, Biswas C, Miranda PB, Raavi SSK. Nonlinear optical techniques for characterization of organic electronic and photonic devices [Internet]. European Physical Journal Special Topics. 2022 ; 231( 4): 695-711.[citado 2024 set. 04 ] Available from: https://doi.org/10.1140/epjs/s11734-021-00391-8
    • Vancouver

      Ahmed MS, Biswas C, Miranda PB, Raavi SSK. Nonlinear optical techniques for characterization of organic electronic and photonic devices [Internet]. European Physical Journal Special Topics. 2022 ; 231( 4): 695-711.[citado 2024 set. 04 ] Available from: https://doi.org/10.1140/epjs/s11734-021-00391-8
  • Source: Coordination Chemistry Reviews. Unidade: IFSC

    Subjects: NANOTECNOLOGIA, SENSOR, QUALIDADE DO AR

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MALIK, Ritu e JOSHI, Nirav Kumar Jitendrabhai e TOMER, Vijay kumar. Functional graphitic carbon (IV) nitride: a versatile sensing material. Coordination Chemistry Reviews, v. 466, n. 13, p. 214611-1-214611-43, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.ccr.2022.214611. Acesso em: 04 set. 2024.
    • APA

      Malik, R., Joshi, N. K. J., & Tomer, V. kumar. (2022). Functional graphitic carbon (IV) nitride: a versatile sensing material. Coordination Chemistry Reviews, 466( 13), 214611-1-214611-43. doi:10.1016/j.ccr.2022.214611
    • NLM

      Malik R, Joshi NKJ, Tomer V kumar. Functional graphitic carbon (IV) nitride: a versatile sensing material [Internet]. Coordination Chemistry Reviews. 2022 ; 466( 13): 214611-1-214611-43.[citado 2024 set. 04 ] Available from: https://doi.org/10.1016/j.ccr.2022.214611
    • Vancouver

      Malik R, Joshi NKJ, Tomer V kumar. Functional graphitic carbon (IV) nitride: a versatile sensing material [Internet]. Coordination Chemistry Reviews. 2022 ; 466( 13): 214611-1-214611-43.[citado 2024 set. 04 ] Available from: https://doi.org/10.1016/j.ccr.2022.214611
  • Source: Journal of Non-Crystalline Solids. Unidade: IFSC

    Subjects: NEODÍMIO, VIDRO CERÂMICO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NAZRIN, S. N. et al. Experimental and theoretical elastic studies on neodymium-doped zinc tellurite glasses. Journal of Non-Crystalline Solids, v. 575, n. Ja 2022, p. 121208-1-121208-15, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jnoncrysol.2021.121208. Acesso em: 04 set. 2024.
    • APA

      Nazrin, S. N., Halimah, M. K., Awshah, A. A. A., Yee, S. P., Hasnimulyati, L., Boukhris, I., et al. (2022). Experimental and theoretical elastic studies on neodymium-doped zinc tellurite glasses. Journal of Non-Crystalline Solids, 575( Ja 2022), 121208-1-121208-15. doi:10.1016/j.jnoncrysol.2021.121208
    • NLM

      Nazrin SN, Halimah MK, Awshah AAA, Yee SP, Hasnimulyati L, Boukhris I, Gowda GVJ, Azlan MN, Huaman JLC, Nadzim SN. Experimental and theoretical elastic studies on neodymium-doped zinc tellurite glasses [Internet]. Journal of Non-Crystalline Solids. 2022 ; 575( Ja 2022): 121208-1-121208-15.[citado 2024 set. 04 ] Available from: https://doi.org/10.1016/j.jnoncrysol.2021.121208
    • Vancouver

      Nazrin SN, Halimah MK, Awshah AAA, Yee SP, Hasnimulyati L, Boukhris I, Gowda GVJ, Azlan MN, Huaman JLC, Nadzim SN. Experimental and theoretical elastic studies on neodymium-doped zinc tellurite glasses [Internet]. Journal of Non-Crystalline Solids. 2022 ; 575( Ja 2022): 121208-1-121208-15.[citado 2024 set. 04 ] Available from: https://doi.org/10.1016/j.jnoncrysol.2021.121208
  • Unidade: IFSC

    Subjects: NANOPARTÍCULAS, POLÍMEROS (MATERIAIS)

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      THOMAS, Sabu et al. Silicon-based hybrid nanoparticles: fundamentals, properties, and applications. . Amsterdam: Elsevier. Disponível em: https://doi.org/10.1016/C2020-0-00520-7. Acesso em: 04 set. 2024. , 2022
    • APA

      Thomas, S., Nguyen, T. A., Ahmadi, M., Yasin, G., & Joshi, N. K. J. (2022). Silicon-based hybrid nanoparticles: fundamentals, properties, and applications. Amsterdam: Elsevier. doi:10.1016/C2020-0-00520-7
    • NLM

      Thomas S, Nguyen TA, Ahmadi M, Yasin G, Joshi NKJ. Silicon-based hybrid nanoparticles: fundamentals, properties, and applications [Internet]. 2022 ;[citado 2024 set. 04 ] Available from: https://doi.org/10.1016/C2020-0-00520-7
    • Vancouver

      Thomas S, Nguyen TA, Ahmadi M, Yasin G, Joshi NKJ. Silicon-based hybrid nanoparticles: fundamentals, properties, and applications [Internet]. 2022 ;[citado 2024 set. 04 ] Available from: https://doi.org/10.1016/C2020-0-00520-7
  • Source: Scripta Materialia. Unidade: IFSC

    Subjects: VIDRO, PROPRIEDADES DOS MATERIAIS, ÓPTICA NÃO LINEAR

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JAGANNATH, G. et al. Tunable femtosecond nonlinear absorption and optical limiting thresholds of La2O3-B2O3 glasses by controlling the borate structural units. Scripta Materialia, v. 211, p. 114530-1-114530-8, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.scriptamat.2022.114530. Acesso em: 04 set. 2024.
    • APA

      Jagannath, G., Gaddam, A., Rao, S. V., Agarkov, D. A., Korableva, G. M., Ghosh, M., et al. (2022). Tunable femtosecond nonlinear absorption and optical limiting thresholds of La2O3-B2O3 glasses by controlling the borate structural units. Scripta Materialia, 211, 114530-1-114530-8. doi:10.1016/j.scriptamat.2022.114530
    • NLM

      Jagannath G, Gaddam A, Rao SV, Agarkov DA, Korableva GM, Ghosh M, Dey KK, Ferreira JMF, Allu AR. Tunable femtosecond nonlinear absorption and optical limiting thresholds of La2O3-B2O3 glasses by controlling the borate structural units [Internet]. Scripta Materialia. 2022 ; 211 114530-1-114530-8.[citado 2024 set. 04 ] Available from: https://doi.org/10.1016/j.scriptamat.2022.114530
    • Vancouver

      Jagannath G, Gaddam A, Rao SV, Agarkov DA, Korableva GM, Ghosh M, Dey KK, Ferreira JMF, Allu AR. Tunable femtosecond nonlinear absorption and optical limiting thresholds of La2O3-B2O3 glasses by controlling the borate structural units [Internet]. Scripta Materialia. 2022 ; 211 114530-1-114530-8.[citado 2024 set. 04 ] Available from: https://doi.org/10.1016/j.scriptamat.2022.114530
  • Source: Journal of Physical Chemistry C. Unidades: IFSC, IQSC

    Subjects: SILICATOS, VIDRO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SAINI, Rajan et al. Correlating sulfur solubility with short-to-intermediate range ordering in the structure of borosilicate glasses. Journal of Physical Chemistry C, v. 126, n. Ja 2022, p. 655-674, 2022Tradução . . Disponível em: https://doi.org/10.1021/acs.jpcc.1c08654. Acesso em: 04 set. 2024.
    • APA

      Saini, R., Kapoor, S., Neuville, D. R., Youngman, R. E., Cerrutti, B. M., McCloy, J. S., et al. (2022). Correlating sulfur solubility with short-to-intermediate range ordering in the structure of borosilicate glasses. Journal of Physical Chemistry C, 126( Ja 2022), 655-674. doi:10.1021/acs.jpcc.1c08654
    • NLM

      Saini R, Kapoor S, Neuville DR, Youngman RE, Cerrutti BM, McCloy JS, Eckert H, Goel A. Correlating sulfur solubility with short-to-intermediate range ordering in the structure of borosilicate glasses [Internet]. Journal of Physical Chemistry C. 2022 ; 126( Ja 2022): 655-674.[citado 2024 set. 04 ] Available from: https://doi.org/10.1021/acs.jpcc.1c08654
    • Vancouver

      Saini R, Kapoor S, Neuville DR, Youngman RE, Cerrutti BM, McCloy JS, Eckert H, Goel A. Correlating sulfur solubility with short-to-intermediate range ordering in the structure of borosilicate glasses [Internet]. Journal of Physical Chemistry C. 2022 ; 126( Ja 2022): 655-674.[citado 2024 set. 04 ] Available from: https://doi.org/10.1021/acs.jpcc.1c08654
  • Source: Posters. Conference titles: São Paulo School of Advanced Science on Quantum Fluids and Applications. Unidades: IF, IFSC

    Subjects: BÓSON, ÓPTICA, ENTROPIA

    PrivadoHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ROY, Rhombik et al. Phases, many-body entropy measures, and coherence of interacting bosons in optical lattices. 2022, Anais.. São Carlos: Universidade de São Paulo - USP, 2022. Disponível em: https://repositorio.usp.br/directbitstream/bfed9b9a-ec9c-4e8d-9126-b58a59e04d39/3071078.pdf. Acesso em: 04 set. 2024.
    • APA

      Roy, R., Gammal, A., Tsatsos, M., Chatterjee, B., Chakrabarti, B., & Lode, A. U. J. (2022). Phases, many-body entropy measures, and coherence of interacting bosons in optical lattices. In Posters. São Carlos: Universidade de São Paulo - USP. Recuperado de https://repositorio.usp.br/directbitstream/bfed9b9a-ec9c-4e8d-9126-b58a59e04d39/3071078.pdf
    • NLM

      Roy R, Gammal A, Tsatsos M, Chatterjee B, Chakrabarti B, Lode AUJ. Phases, many-body entropy measures, and coherence of interacting bosons in optical lattices [Internet]. Posters. 2022 ;[citado 2024 set. 04 ] Available from: https://repositorio.usp.br/directbitstream/bfed9b9a-ec9c-4e8d-9126-b58a59e04d39/3071078.pdf
    • Vancouver

      Roy R, Gammal A, Tsatsos M, Chatterjee B, Chakrabarti B, Lode AUJ. Phases, many-body entropy measures, and coherence of interacting bosons in optical lattices [Internet]. Posters. 2022 ;[citado 2024 set. 04 ] Available from: https://repositorio.usp.br/directbitstream/bfed9b9a-ec9c-4e8d-9126-b58a59e04d39/3071078.pdf
  • Source: New Journal of Chemistry. Unidade: IFSC

    Subjects: ZINCO, BAIXA TEMPERATURA, SENSOR, FILMES FINOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JOSHI, Nirav Kumar Jitendrabhai et al. Zinc stannate microcubes with an integrated microheater for low-temperature NO2 detection. New Journal of Chemistry, v. 46, n. 37, p. 17967-17976 + supplementary information, 2022Tradução . . Disponível em: https://doi.org/10.1039/D2NJ02709G. Acesso em: 04 set. 2024.
    • APA

      Joshi, N. K. J., Long, H., Naik, P., Kumar, A., Mastelaro, V. R., Oliveira Junior, O. N. de, et al. (2022). Zinc stannate microcubes with an integrated microheater for low-temperature NO2 detection. New Journal of Chemistry, 46( 37), 17967-17976 + supplementary information. doi:10.1039/D2NJ02709G
    • NLM

      Joshi NKJ, Long H, Naik P, Kumar A, Mastelaro VR, Oliveira Junior ON de, Zettl A, Lin L. Zinc stannate microcubes with an integrated microheater for low-temperature NO2 detection [Internet]. New Journal of Chemistry. 2022 ; 46( 37): 17967-17976 + supplementary information.[citado 2024 set. 04 ] Available from: https://doi.org/10.1039/D2NJ02709G
    • Vancouver

      Joshi NKJ, Long H, Naik P, Kumar A, Mastelaro VR, Oliveira Junior ON de, Zettl A, Lin L. Zinc stannate microcubes with an integrated microheater for low-temperature NO2 detection [Internet]. New Journal of Chemistry. 2022 ; 46( 37): 17967-17976 + supplementary information.[citado 2024 set. 04 ] Available from: https://doi.org/10.1039/D2NJ02709G
  • Source: International Journal of Hydrogen Energy. Unidade: IFSC

    Subjects: BIOTECNOLOGIA, FONTES RENOVÁVEIS DE ENERGIA, HIDROGÊNIO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRAR, Kamalpreet Kaur et al. An overview on progress, advances, and future outlook for biohydrogen production technology. International Journal of Hydrogen Energy, v. 47, n. 88, p. 37264-37281, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.ijhydene.2022.01.156. Acesso em: 04 set. 2024.
    • APA

      Brar, K. K., Cortez, A. A., Pellegrini, V. de O. A., Amulya, K., Polikarpov, I., Magdouli, S., et al. (2022). An overview on progress, advances, and future outlook for biohydrogen production technology. International Journal of Hydrogen Energy, 47( 88), 37264-37281. doi:10.1016/j.ijhydene.2022.01.156
    • NLM

      Brar KK, Cortez AA, Pellegrini V de OA, Amulya K, Polikarpov I, Magdouli S, Kumar M, Yang Y-H, Bhatia SK, Brar SK. An overview on progress, advances, and future outlook for biohydrogen production technology [Internet]. International Journal of Hydrogen Energy. 2022 ; 47( 88): 37264-37281.[citado 2024 set. 04 ] Available from: https://doi.org/10.1016/j.ijhydene.2022.01.156
    • Vancouver

      Brar KK, Cortez AA, Pellegrini V de OA, Amulya K, Polikarpov I, Magdouli S, Kumar M, Yang Y-H, Bhatia SK, Brar SK. An overview on progress, advances, and future outlook for biohydrogen production technology [Internet]. International Journal of Hydrogen Energy. 2022 ; 47( 88): 37264-37281.[citado 2024 set. 04 ] Available from: https://doi.org/10.1016/j.ijhydene.2022.01.156
  • Source: Metal oxide nanocomposites: synthesis and applications. Unidade: IFSC

    Subjects: NANOCOMPOSITOS, POLÍMEROS (MATERIAIS)

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MALIK, Ritu et al. Introduction to nanocomposites. Metal oxide nanocomposites: synthesis and applications. Tradução . Hoboken: Wiley, 2021. p. 402 . Disponível em: https://doi.org/10.1002/9781119364726.ch2. Acesso em: 04 set. 2024.
    • APA

      Malik, R., Tomer, V. K., Chaudhary, V., Joshi, N. K. J., & Duhan, S. (2021). Introduction to nanocomposites. In Metal oxide nanocomposites: synthesis and applications (p. 402 ). Hoboken: Wiley. doi:10.1002/9781119364726.ch2
    • NLM

      Malik R, Tomer VK, Chaudhary V, Joshi NKJ, Duhan S. Introduction to nanocomposites [Internet]. In: Metal oxide nanocomposites: synthesis and applications. Hoboken: Wiley; 2021. p. 402 .[citado 2024 set. 04 ] Available from: https://doi.org/10.1002/9781119364726.ch2
    • Vancouver

      Malik R, Tomer VK, Chaudhary V, Joshi NKJ, Duhan S. Introduction to nanocomposites [Internet]. In: Metal oxide nanocomposites: synthesis and applications. Hoboken: Wiley; 2021. p. 402 .[citado 2024 set. 04 ] Available from: https://doi.org/10.1002/9781119364726.ch2
  • Source: RSC Advances. Unidade: IFSC

    Subjects: POLUIÇÃO DA ÁGUA, CHUMBO, RESINAS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANBAZHAGAN, Sivaprakasam e THIRUVENGADAM, Venugopal e SUKERI, Anandhakumar. An Amberlite IRA-400 Cl- ion-exchange resin modified with Prosopis juliflora seeds as an efficient Pb2+ adsorbent: adsorption, kinetics, thermodynamics, and computational modeling studies by density functional theory. RSC Advances, v. 11, n. 8, p. 4478-4488, 2021Tradução . . Disponível em: https://doi.org/10.1039/d0ra10128a. Acesso em: 04 set. 2024.
    • APA

      Anbazhagan, S., Thiruvengadam, V., & Sukeri, A. (2021). An Amberlite IRA-400 Cl- ion-exchange resin modified with Prosopis juliflora seeds as an efficient Pb2+ adsorbent: adsorption, kinetics, thermodynamics, and computational modeling studies by density functional theory. RSC Advances, 11( 8), 4478-4488. doi:10.1039/d0ra10128a
    • NLM

      Anbazhagan S, Thiruvengadam V, Sukeri A. An Amberlite IRA-400 Cl- ion-exchange resin modified with Prosopis juliflora seeds as an efficient Pb2+ adsorbent: adsorption, kinetics, thermodynamics, and computational modeling studies by density functional theory [Internet]. RSC Advances. 2021 ; 11( 8): 4478-4488.[citado 2024 set. 04 ] Available from: https://doi.org/10.1039/d0ra10128a
    • Vancouver

      Anbazhagan S, Thiruvengadam V, Sukeri A. An Amberlite IRA-400 Cl- ion-exchange resin modified with Prosopis juliflora seeds as an efficient Pb2+ adsorbent: adsorption, kinetics, thermodynamics, and computational modeling studies by density functional theory [Internet]. RSC Advances. 2021 ; 11( 8): 4478-4488.[citado 2024 set. 04 ] Available from: https://doi.org/10.1039/d0ra10128a
  • Source: Spectrochimica Acta A. Unidade: IFSC

    Subjects: ESTRADIOL, ESPECTROSCOPIA, ISOMETRIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PANDEY, Jaya et al. Vibrational and conformational analysis of structural phase transition in Estradiol 17b valerate with temperature. Spectrochimica Acta A, v. 263, p. 120219-1-120219-7 + supplementary material, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.saa.2021.120219. Acesso em: 04 set. 2024.
    • APA

      Pandey, J., Prajapati, P., Tandon, P., Sinha, K., Ayala, A. P., & Ellena, J. (2021). Vibrational and conformational analysis of structural phase transition in Estradiol 17b valerate with temperature. Spectrochimica Acta A, 263, 120219-1-120219-7 + supplementary material. doi:10.1016/j.saa.2021.120219
    • NLM

      Pandey J, Prajapati P, Tandon P, Sinha K, Ayala AP, Ellena J. Vibrational and conformational analysis of structural phase transition in Estradiol 17b valerate with temperature [Internet]. Spectrochimica Acta A. 2021 ; 263 120219-1-120219-7 + supplementary material.[citado 2024 set. 04 ] Available from: https://doi.org/10.1016/j.saa.2021.120219
    • Vancouver

      Pandey J, Prajapati P, Tandon P, Sinha K, Ayala AP, Ellena J. Vibrational and conformational analysis of structural phase transition in Estradiol 17b valerate with temperature [Internet]. Spectrochimica Acta A. 2021 ; 263 120219-1-120219-7 + supplementary material.[citado 2024 set. 04 ] Available from: https://doi.org/10.1016/j.saa.2021.120219
  • Source: Journal of Cleaner Production. Unidades: IFSC, EEL, BIOENERGIA

    Subjects: BAGAÇOS, ETANOL, BIOCOMBUSTÍVEIS, CANA-DE-AÇÚCAR, HIDRÓLISE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HANS, Meenu et al. Liquid ammonia pretreatment optimization for improved release of fermentable sugars from sugarcane bagasse. Journal of Cleaner Production, v. 281, n. Ja 2021, p. 123922-1-123922-7, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jclepro.2020.123922. Acesso em: 04 set. 2024.
    • APA

      Hans, M., Garg, S., Pellegrini, V. de O. A., Filgueiras, J. G., Azevêdo, E. R. de, Guimarães, F. E. G., et al. (2021). Liquid ammonia pretreatment optimization for improved release of fermentable sugars from sugarcane bagasse. Journal of Cleaner Production, 281( Ja 2021), 123922-1-123922-7. doi:10.1016/j.jclepro.2020.123922
    • NLM

      Hans M, Garg S, Pellegrini V de OA, Filgueiras JG, Azevêdo ER de, Guimarães FEG, Chandel AK, Polikarpov I, Chadha BS, Kumar S. Liquid ammonia pretreatment optimization for improved release of fermentable sugars from sugarcane bagasse [Internet]. Journal of Cleaner Production. 2021 ; 281( Ja 2021): 123922-1-123922-7.[citado 2024 set. 04 ] Available from: https://doi.org/10.1016/j.jclepro.2020.123922
    • Vancouver

      Hans M, Garg S, Pellegrini V de OA, Filgueiras JG, Azevêdo ER de, Guimarães FEG, Chandel AK, Polikarpov I, Chadha BS, Kumar S. Liquid ammonia pretreatment optimization for improved release of fermentable sugars from sugarcane bagasse [Internet]. Journal of Cleaner Production. 2021 ; 281( Ja 2021): 123922-1-123922-7.[citado 2024 set. 04 ] Available from: https://doi.org/10.1016/j.jclepro.2020.123922

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024