Filters : "TOPOLOGIA ALGÉBRICA" Limpar

Filters



Refine with date range

Vocabulário Controlado do SIBiUSP


  • Source: Journal of Dynamics and Differential Equations. Unidade: IME

    Subjects: TEORIA ESPECTRAL, TOPOLOGIA ALGÉBRICA, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Versão AceitaOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BENEVIERI, Pierluigi; CALAMAI, Alessandro; FURI, Massimo; PERA, Maria Patrizia. A degree associated to linear eigenvalue problems in Hilbert spaces and applications to nonlinear spectral theory. Journal of Dynamics and Differential Equations, New York, v. 34, n. 1, p. 555–581, 2022. Disponível em: < https://doi.org/10.1007/s10884-020-09921-9 > DOI: 10.1007/s10884-020-09921-9.
    • APA

      Benevieri, P., Calamai, A., Furi, M., & Pera, M. P. (2022). A degree associated to linear eigenvalue problems in Hilbert spaces and applications to nonlinear spectral theory. Journal of Dynamics and Differential Equations, 34( 1), 555–581. doi:10.1007/s10884-020-09921-9
    • NLM

      Benevieri P, Calamai A, Furi M, Pera MP. A degree associated to linear eigenvalue problems in Hilbert spaces and applications to nonlinear spectral theory [Internet]. Journal of Dynamics and Differential Equations. 2022 ; 34( 1): 555–581.Available from: https://doi.org/10.1007/s10884-020-09921-9
    • Vancouver

      Benevieri P, Calamai A, Furi M, Pera MP. A degree associated to linear eigenvalue problems in Hilbert spaces and applications to nonlinear spectral theory [Internet]. Journal of Dynamics and Differential Equations. 2022 ; 34( 1): 555–581.Available from: https://doi.org/10.1007/s10884-020-09921-9
  • Source: São Paulo Journal of Mathematical Sciences. Unidade: IME

    Subject: TOPOLOGIA ALGÉBRICA

    Available on 2023-01-04Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORSARI, Lucilia Daruiz; CARDONA, Fernanda Soares Pinto; GONÇALVES, Daciberg Lima. Some aspects of Reidemeister fixed point theory, equivariant fxed point theory and coincidence theory. São Paulo Journal of Mathematical Sciences, Heidelberg, 2022. Disponível em: < https://doi.org/10.1007/s40863-021-00278-5 > DOI: 10.1007/s40863-021-00278-5.
    • APA

      Borsari, L. D., Cardona, F. S. P., & Gonçalves, D. L. (2022). Some aspects of Reidemeister fixed point theory, equivariant fxed point theory and coincidence theory. São Paulo Journal of Mathematical Sciences. doi:10.1007/s40863-021-00278-5
    • NLM

      Borsari LD, Cardona FSP, Gonçalves DL. Some aspects of Reidemeister fixed point theory, equivariant fxed point theory and coincidence theory [Internet]. São Paulo Journal of Mathematical Sciences. 2022 ;Available from: https://doi.org/10.1007/s40863-021-00278-5
    • Vancouver

      Borsari LD, Cardona FSP, Gonçalves DL. Some aspects of Reidemeister fixed point theory, equivariant fxed point theory and coincidence theory [Internet]. São Paulo Journal of Mathematical Sciences. 2022 ;Available from: https://doi.org/10.1007/s40863-021-00278-5
  • Unidade: IME

    Subjects: COHOMOLOGIA, HOMOTOPIA, TOPOLOGIA ALGÉBRICA, FUNDAMENTOS DA MATEMÁTICA

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALEXANDRE, Thiago; MARIANO, Hugo Luiz. On the homotopy types. 2022.Universidade de São Paulo, São Paulo, 2022. Disponível em: < https://www.teses.usp.br/teses/disponiveis/45/45131/tde-14042022-085011/ > DOI: https://doi.org/10.11606/D.45.2022.tde-14042022-085011.
    • APA

      Alexandre, T., & Mariano, H. L. (2022). On the homotopy types. Universidade de São Paulo, São Paulo. Recuperado de https://www.teses.usp.br/teses/disponiveis/45/45131/tde-14042022-085011/
    • NLM

      Alexandre T, Mariano HL. On the homotopy types [Internet]. 2022 ;Available from: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-14042022-085011/
    • Vancouver

      Alexandre T, Mariano HL. On the homotopy types [Internet]. 2022 ;Available from: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-14042022-085011/
  • Source: Journal of Topology and Analysis. Unidade: ICMC

    Subjects: TOPOLOGIA ALGÉBRICA, GRUPOS DE TRANSFORMAÇÃO, ROBÓTICA, CONTROLE (TEORIA DE SISTEMAS E CONTROLE)

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CADAVID-AGUILAR, Natalia; GONZÁLEZ, Jesús; GUTIÉRREZ, Bárbara; ZAPATA, Cesar Augusto Ipanaque. Effectual topological complexity. Journal of Topology and Analysis, Singapore, 2021. Disponível em: < https://dx.doi.org/10.1142/S1793525321500618 > DOI: 10.1142/S1793525321500618.
    • APA

      Cadavid-Aguilar, N., González, J., Gutiérrez, B., & Zapata, C. A. I. (2021). Effectual topological complexity. Journal of Topology and Analysis. doi:10.1142/S1793525321500618
    • NLM

      Cadavid-Aguilar N, González J, Gutiérrez B, Zapata CAI. Effectual topological complexity [Internet]. Journal of Topology and Analysis. 2021 ;Available from: https://dx.doi.org/10.1142/S1793525321500618
    • Vancouver

      Cadavid-Aguilar N, González J, Gutiérrez B, Zapata CAI. Effectual topological complexity [Internet]. Journal of Topology and Analysis. 2021 ;Available from: https://dx.doi.org/10.1142/S1793525321500618
  • Source: Topology and its Applications. Unidade: IME

    Subjects: GRUPOS DE HOMOTOPIA, TOPOLOGIA ALGÉBRICA

    Available on 2022-12-30Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOLASIŃSKI, Marek; GONÇALVES, Daciberg Lima; WONG, Peter. On exponent and nilpotency of [Ω('S POT. r=1'),Ω('KP POT. n')]. Topology and its Applications, Amsterdam, v. 293, 2021. Disponível em: < https://doi.org/10.1016/j.topol.2020.107567 > DOI: 10.1016/j.topol.2020.107567.
    • APA

      Golasiński, M., Gonçalves, D. L., & Wong, P. (2021). On exponent and nilpotency of [Ω('S POT. r=1'),Ω('KP POT. n')]. Topology and its Applications, 293. doi:10.1016/j.topol.2020.107567
    • NLM

      Golasiński M, Gonçalves DL, Wong P. On exponent and nilpotency of [Ω('S POT. r=1'),Ω('KP POT. n')] [Internet]. Topology and its Applications. 2021 ; 293Available from: https://doi.org/10.1016/j.topol.2020.107567
    • Vancouver

      Golasiński M, Gonçalves DL, Wong P. On exponent and nilpotency of [Ω('S POT. r=1'),Ω('KP POT. n')] [Internet]. Topology and its Applications. 2021 ; 293Available from: https://doi.org/10.1016/j.topol.2020.107567
  • Unidade: ICMC

    Subjects: TOPOLOGIA ALGÉBRICA, CATEGORIAS TOPOLÓGICAS, FIBRAÇÕES, INVARIANTES

    Online source accessHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LIER, Matias de Jong van; MATTOS, Denise de. Topological Complexity and the Lusternik-Schnirelmann Category. 2021.Universidade de São Paulo, São Carlos, 2021. Disponível em: < https://www.teses.usp.br/teses/disponiveis/55/55135/tde-09092021-104209/ >.
    • APA

      Lier, M. de J. van, & Mattos, D. de. (2021). Topological Complexity and the Lusternik-Schnirelmann Category. Universidade de São Paulo, São Carlos. Recuperado de https://www.teses.usp.br/teses/disponiveis/55/55135/tde-09092021-104209/
    • NLM

      Lier M de J van, Mattos D de. Topological Complexity and the Lusternik-Schnirelmann Category [Internet]. 2021 ;Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-09092021-104209/
    • Vancouver

      Lier M de J van, Mattos D de. Topological Complexity and the Lusternik-Schnirelmann Category [Internet]. 2021 ;Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-09092021-104209/
  • Source: New York Journal of Mathematics. Unidade: IME

    Subjects: TOPOLOGIA ALGÉBRICA, HOMOLOGIA

    Versão PublicadaOnline source accessHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FENILLE, Marcio Colombo; GONÇALVES, Daciberg Lima. Strongly surjective maps from certain two-complexes with trivial top-cohomology onto the projective plane. New York Journal of Mathematics, Albany, v. 27, p. 615-630, 2021. Disponível em: < http://nyjm.albany.edu/j/2021/27-24p.pdf >.
    • APA

      Fenille, M. C., & Gonçalves, D. L. (2021). Strongly surjective maps from certain two-complexes with trivial top-cohomology onto the projective plane. New York Journal of Mathematics, 27, 615-630. Recuperado de http://nyjm.albany.edu/j/2021/27-24p.pdf
    • NLM

      Fenille MC, Gonçalves DL. Strongly surjective maps from certain two-complexes with trivial top-cohomology onto the projective plane [Internet]. New York Journal of Mathematics. 2021 ; 27 615-630.Available from: http://nyjm.albany.edu/j/2021/27-24p.pdf
    • Vancouver

      Fenille MC, Gonçalves DL. Strongly surjective maps from certain two-complexes with trivial top-cohomology onto the projective plane [Internet]. New York Journal of Mathematics. 2021 ; 27 615-630.Available from: http://nyjm.albany.edu/j/2021/27-24p.pdf
  • Source: São Paulo Journal of Mathematical Sciences. Unidade: IME

    Subjects: CATEGORIAS TOPOLÓGICAS, TOPOLOGIA ALGÉBRICA

    Available on 2022-07-06Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TENORIO, Ana Luiza; MARIANO, Hugo Luiz. On sheaf cohomology and natural expansions. São Paulo Journal of Mathematical Sciences, Heidelberg, v. 15, n. 2, p. 571-614, 2021. Disponível em: < https://doi.org/10.1007/s40863-021-00246-z > DOI: 10.1007/s40863-021-00246-z.
    • APA

      Tenorio, A. L., & Mariano, H. L. (2021). On sheaf cohomology and natural expansions. São Paulo Journal of Mathematical Sciences, 15( 2), 571-614. doi:10.1007/s40863-021-00246-z
    • NLM

      Tenorio AL, Mariano HL. On sheaf cohomology and natural expansions [Internet]. São Paulo Journal of Mathematical Sciences. 2021 ; 15( 2): 571-614.Available from: https://doi.org/10.1007/s40863-021-00246-z
    • Vancouver

      Tenorio AL, Mariano HL. On sheaf cohomology and natural expansions [Internet]. São Paulo Journal of Mathematical Sciences. 2021 ; 15( 2): 571-614.Available from: https://doi.org/10.1007/s40863-021-00246-z
  • Unidade: IME

    Subject: TOPOLOGIA ALGÉBRICA

    Online source accessHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MAUÉS, Bartira; GONÇALVES, Daciberg Lima. Nielsen theory of 2-valued maps on the Klein bottle. 2020.Universidade de São Paulo, São Paulo, 2020. Disponível em: < https://www.teses.usp.br/teses/disponiveis/45/45131/tde-19052020-183114/ >.
    • APA

      Maués, B., & Gonçalves, D. L. (2020). Nielsen theory of 2-valued maps on the Klein bottle. Universidade de São Paulo, São Paulo. Recuperado de https://www.teses.usp.br/teses/disponiveis/45/45131/tde-19052020-183114/
    • NLM

      Maués B, Gonçalves DL. Nielsen theory of 2-valued maps on the Klein bottle [Internet]. 2020 ;Available from: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-19052020-183114/
    • Vancouver

      Maués B, Gonçalves DL. Nielsen theory of 2-valued maps on the Klein bottle [Internet]. 2020 ;Available from: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-19052020-183114/
  • Source: Houston Journal of Mathematics. Unidade: IME

    Subjects: TOPOLOGIA ALGÉBRICA, TEORIA DA DIMENSÃO

    Online source accessHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima; MONIS, Thaís F. M; SPIEŻ, Stanisław. Deficient and multiple points of maps into a manifold. Houston Journal of Mathematics, Houston, v. 46, n. 4, p. 1033–1052, 2020. Disponível em: < https://www.math.uh.edu/~hjm/Vol46-4.html >.
    • APA

      Gonçalves, D. L., Monis, T. F. M., & Spież, S. (2020). Deficient and multiple points of maps into a manifold. Houston Journal of Mathematics, 46( 4), 1033–1052. Recuperado de https://www.math.uh.edu/~hjm/Vol46-4.html
    • NLM

      Gonçalves DL, Monis TFM, Spież S. Deficient and multiple points of maps into a manifold [Internet]. Houston Journal of Mathematics. 2020 ; 46( 4): 1033–1052.Available from: https://www.math.uh.edu/~hjm/Vol46-4.html
    • Vancouver

      Gonçalves DL, Monis TFM, Spież S. Deficient and multiple points of maps into a manifold [Internet]. Houston Journal of Mathematics. 2020 ; 46( 4): 1033–1052.Available from: https://www.math.uh.edu/~hjm/Vol46-4.html
  • Source: Journal of Functional Analysis. Unidade: IME

    Subjects: GEOMETRIA ALGÉBRICA, TOPOLOGIA ALGÉBRICA, SISTEMAS SOBREDETERMINADOS, OPERADORES LINEARES

    Versão AceitaOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CORDARO, Paulo Domingos; SALA, Giuseppe Della; LAMEL, Bernhard. The Borel map for compact sets in the plane. Journal of Functional Analysis, Brugge, v. 278, n. 6, 2020. Disponível em: < http://dx.doi.org/10.1016/j.jfa.2019.108402 > DOI: 10.1016/j.jfa.2019.108402.
    • APA

      Cordaro, P. D., Sala, G. D., & Lamel, B. (2020). The Borel map for compact sets in the plane. Journal of Functional Analysis, 278( 6). doi:10.1016/j.jfa.2019.108402
    • NLM

      Cordaro PD, Sala GD, Lamel B. The Borel map for compact sets in the plane [Internet]. Journal of Functional Analysis. 2020 ; 278( 6):Available from: http://dx.doi.org/10.1016/j.jfa.2019.108402
    • Vancouver

      Cordaro PD, Sala GD, Lamel B. The Borel map for compact sets in the plane [Internet]. Journal of Functional Analysis. 2020 ; 278( 6):Available from: http://dx.doi.org/10.1016/j.jfa.2019.108402
  • Source: Chaos. Unidade: IF

    Subjects: CAOS (SISTEMAS DINÂMICOS), MECÂNICA HAMILTONIANA, ACELERAÇÃO DE PARTÍCULAS, TOPOLOGIA ALGÉBRICA, SISTEMAS DINÂMICOS (FÍSICA MATEMÁTICA)

    Versão PublicadaOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MUGNAINE, Michele; BATISTA, Antonio; CALDAS, Iberê Luiz; SZEZECH, Jose Danilo; VIANA, Ricardo. Ratchet current in nontwist Hamiltonian systems. Chaos, Maryland, v. 30, n. 9, 2020. Disponível em: < https://doi.org/10.1063/5.0022073 > DOI: 10.1063/5.0022073.
    • APA

      Mugnaine, M., Batista, A., Caldas, I. L., Szezech, J. D., & Viana, R. (2020). Ratchet current in nontwist Hamiltonian systems. Chaos, 30( 9). doi:10.1063/5.0022073
    • NLM

      Mugnaine M, Batista A, Caldas IL, Szezech JD, Viana R. Ratchet current in nontwist Hamiltonian systems [Internet]. Chaos. 2020 ; 30( 9):Available from: https://doi.org/10.1063/5.0022073
    • Vancouver

      Mugnaine M, Batista A, Caldas IL, Szezech JD, Viana R. Ratchet current in nontwist Hamiltonian systems [Internet]. Chaos. 2020 ; 30( 9):Available from: https://doi.org/10.1063/5.0022073
  • Source: Chebyshevskii Sbornik. Unidade: IME

    Subjects: TOPOLOGIA ALGÉBRICA, GEOMETRIA DIFERENCIAL

    Versão PublicadaOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima; WONG, Peter; XUEZHI , Zhao. Mapping degrees between homotopy space forms. Chebyshevskii Sbornik, Tula, v. 21, n. 2, p. 94-108, 2020. Disponível em: < https://doi.org/10.22405/2226-8383-2020-21-2-94-108 > DOI: 10.22405/2226-8383-2020-21-2-94-108.
    • APA

      Gonçalves, D. L., Wong, P., & Xuezhi , Z. (2020). Mapping degrees between homotopy space forms. Chebyshevskii Sbornik, 21( 2), 94-108. doi:10.22405/2226-8383-2020-21-2-94-108
    • NLM

      Gonçalves DL, Wong P, Xuezhi Z. Mapping degrees between homotopy space forms [Internet]. Chebyshevskii Sbornik. 2020 ; 21( 2): 94-108.Available from: https://doi.org/10.22405/2226-8383-2020-21-2-94-108
    • Vancouver

      Gonçalves DL, Wong P, Xuezhi Z. Mapping degrees between homotopy space forms [Internet]. Chebyshevskii Sbornik. 2020 ; 21( 2): 94-108.Available from: https://doi.org/10.22405/2226-8383-2020-21-2-94-108
  • Source: Topological Methods in Nonlinear Analysis. Unidade: IME

    Subjects: TOPOLOGIA ALGÉBRICA, TOPOLOGIA DINÂMICA

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima; KELLY, Michael R. Index zero fixed points and 2-complexes with local separating points. Topological Methods in Nonlinear Analysis, Torun, v. 56, n. 2, p. 457-472, 2020. Disponível em: < https://doi.org/10.12775/TMNA.2020.054 > DOI: 10.12775/TMNA.2020.054.
    • APA

      Gonçalves, D. L., & Kelly, M. R. (2020). Index zero fixed points and 2-complexes with local separating points. Topological Methods in Nonlinear Analysis, 56( 2), 457-472. doi:10.12775/TMNA.2020.054
    • NLM

      Gonçalves DL, Kelly MR. Index zero fixed points and 2-complexes with local separating points [Internet]. Topological Methods in Nonlinear Analysis. 2020 ; 56( 2): 457-472.Available from: https://doi.org/10.12775/TMNA.2020.054
    • Vancouver

      Gonçalves DL, Kelly MR. Index zero fixed points and 2-complexes with local separating points [Internet]. Topological Methods in Nonlinear Analysis. 2020 ; 56( 2): 457-472.Available from: https://doi.org/10.12775/TMNA.2020.054
  • Source: Topological Methods in Nonlinear Analysis. Unidade: IME

    Subjects: TEORIA ESPECTRAL, OPERADORES LINEARES, TOPOLOGIA ALGÉBRICA

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BENEVIERI, Pierluigi; CALAMAI, Alessandro; FURI, Massimo; PERA, Maria Patrizia. Global continuation in Euclidean spaces of the perturbed unit eigenvectors corresponding to a simple eigenvalue. Topological Methods in Nonlinear Analysis, Torun, v. 55, n. 1, p. 169-184, 2020. Disponível em: < http://dx.doi.org/10.12775/tmna.2019.093 > DOI: 10.12775/tmna.2019.093.
    • APA

      Benevieri, P., Calamai, A., Furi, M., & Pera, M. P. (2020). Global continuation in Euclidean spaces of the perturbed unit eigenvectors corresponding to a simple eigenvalue. Topological Methods in Nonlinear Analysis, 55( 1), 169-184. doi:10.12775/tmna.2019.093
    • NLM

      Benevieri P, Calamai A, Furi M, Pera MP. Global continuation in Euclidean spaces of the perturbed unit eigenvectors corresponding to a simple eigenvalue [Internet]. Topological Methods in Nonlinear Analysis. 2020 ; 55( 1): 169-184.Available from: http://dx.doi.org/10.12775/tmna.2019.093
    • Vancouver

      Benevieri P, Calamai A, Furi M, Pera MP. Global continuation in Euclidean spaces of the perturbed unit eigenvectors corresponding to a simple eigenvalue [Internet]. Topological Methods in Nonlinear Analysis. 2020 ; 55( 1): 169-184.Available from: http://dx.doi.org/10.12775/tmna.2019.093
  • Source: Topological Methods in Nonlinear Analysis. Unidade: IME

    Subjects: TOPOLOGIA ALGÉBRICA, TEORIA DOS GRUPOS

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima; CARDONA, Fernanda Soares Pinto; GUASCHI, John; LAASS, Vinicius Casteluber. The Borsuk-Ulam property for homotopy classes of maps from the torus to the Klein bottle. Topological Methods in Nonlinear Analysis, Torun, v. 56, n. 2, p. 529-558, 2020. Disponível em: < https://doi.org/10.12775/TMNA.2020.003 > DOI: 10.12775/TMNA.2020.003.
    • APA

      Gonçalves, D. L., Cardona, F. S. P., Guaschi, J., & Laass, V. C. (2020). The Borsuk-Ulam property for homotopy classes of maps from the torus to the Klein bottle. Topological Methods in Nonlinear Analysis, 56( 2), 529-558. doi:10.12775/TMNA.2020.003
    • NLM

      Gonçalves DL, Cardona FSP, Guaschi J, Laass VC. The Borsuk-Ulam property for homotopy classes of maps from the torus to the Klein bottle [Internet]. Topological Methods in Nonlinear Analysis. 2020 ; 56( 2): 529-558.Available from: https://doi.org/10.12775/TMNA.2020.003
    • Vancouver

      Gonçalves DL, Cardona FSP, Guaschi J, Laass VC. The Borsuk-Ulam property for homotopy classes of maps from the torus to the Klein bottle [Internet]. Topological Methods in Nonlinear Analysis. 2020 ; 56( 2): 529-558.Available from: https://doi.org/10.12775/TMNA.2020.003
  • Unidade: ICMC

    Subjects: TOPOLOGIA COMBINATÓRIA, TOPOLOGIA GEOMÉTRICA, VARIEDADES TOPOLÓGICAS, TOPOLOGIA ALGÉBRICA, GEOMETRIA TOPOLÓGICA

    Online source accessHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MAURI, Leandro Vicente; MATTOS, Denise de. Sobre métodos topológicos em combinatória e geometria. 2019.Universidade de São Paulo, São Carlos, 2019. Disponível em: < http://www.teses.usp.br/teses/disponiveis/55/55135/tde-29042019-144312/ >.
    • APA

      Mauri, L. V., & Mattos, D. de. (2019). Sobre métodos topológicos em combinatória e geometria. Universidade de São Paulo, São Carlos. Recuperado de http://www.teses.usp.br/teses/disponiveis/55/55135/tde-29042019-144312/
    • NLM

      Mauri LV, Mattos D de. Sobre métodos topológicos em combinatória e geometria [Internet]. 2019 ;Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-29042019-144312/
    • Vancouver

      Mauri LV, Mattos D de. Sobre métodos topológicos em combinatória e geometria [Internet]. 2019 ;Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-29042019-144312/
  • Source: Journal of Fixed Point Theory and Applications. Unidade: IME

    Subjects: TOPOLOGIA ALGÉBRICA, MÉTODOS TOPOLÓGICOS, BRAIDS, TEORIA DOS GRUPOS

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima; GUASCHI, John; LAASS, Vinicius Casteluber. The Borsuk–Ulam property for homotopy classes of self-maps of surfaces of Euler characteristic zero. Journal of Fixed Point Theory and Applications, Cham, v. 21, n. 2, p. 1-29, 2019. Disponível em: < http://dx.doi.org/10.1007/s11784-019-0693-z > DOI: 10.1007/s11784-019-0693-z.
    • APA

      Gonçalves, D. L., Guaschi, J., & Laass, V. C. (2019). The Borsuk–Ulam property for homotopy classes of self-maps of surfaces of Euler characteristic zero. Journal of Fixed Point Theory and Applications, 21( 2), 1-29. doi:10.1007/s11784-019-0693-z
    • NLM

      Gonçalves DL, Guaschi J, Laass VC. The Borsuk–Ulam property for homotopy classes of self-maps of surfaces of Euler characteristic zero [Internet]. Journal of Fixed Point Theory and Applications. 2019 ; 21( 2): 1-29.Available from: http://dx.doi.org/10.1007/s11784-019-0693-z
    • Vancouver

      Gonçalves DL, Guaschi J, Laass VC. The Borsuk–Ulam property for homotopy classes of self-maps of surfaces of Euler characteristic zero [Internet]. Journal of Fixed Point Theory and Applications. 2019 ; 21( 2): 1-29.Available from: http://dx.doi.org/10.1007/s11784-019-0693-z
  • Source: Acta Mathematica Sinica, English Series. Unidade: IME

    Subjects: TEOREMA DO PONTO FIXO, TOPOLOGIA ALGÉBRICA, GRUPOS NILPOTENTES, GRUPOS DE LIE

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima; WONG, Peter. Coincidence Wecken property for nilmanifolds. Acta Mathematica Sinica, English Series, Berlin, v. 35, n. 2, p. 239-244, 2019. Disponível em: < http://dx.doi.org/10.1007/s10114-018-7315-3 > DOI: 10.1007/s10114-018-7315-3.
    • APA

      Gonçalves, D. L., & Wong, P. (2019). Coincidence Wecken property for nilmanifolds. Acta Mathematica Sinica, English Series, 35( 2), 239-244. doi:10.1007/s10114-018-7315-3
    • NLM

      Gonçalves DL, Wong P. Coincidence Wecken property for nilmanifolds [Internet]. Acta Mathematica Sinica, English Series. 2019 ; 35( 2): 239-244.Available from: http://dx.doi.org/10.1007/s10114-018-7315-3
    • Vancouver

      Gonçalves DL, Wong P. Coincidence Wecken property for nilmanifolds [Internet]. Acta Mathematica Sinica, English Series. 2019 ; 35( 2): 239-244.Available from: http://dx.doi.org/10.1007/s10114-018-7315-3
  • Source: Bulletin of the Brazilian Mathematical Society, New Series. Unidade: IME

    Subject: TOPOLOGIA ALGÉBRICA

    Versão AceitaOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima; SANTOS, Anderson Paião dos. Diagonal involutions and the Borsuk–Ulam property for product of surfaces. Bulletin of the Brazilian Mathematical Society, New Series, Secaucus, v. 50, n. 3, p. 771-786, 2019. Disponível em: < http://dx.doi.org/10.1007/s00574-018-0098-4 > DOI: 10.1007/s00574-018-0098-4.
    • APA

      Gonçalves, D. L., & Santos, A. P. dos. (2019). Diagonal involutions and the Borsuk–Ulam property for product of surfaces. Bulletin of the Brazilian Mathematical Society, New Series, 50( 3), 771-786. doi:10.1007/s00574-018-0098-4
    • NLM

      Gonçalves DL, Santos AP dos. Diagonal involutions and the Borsuk–Ulam property for product of surfaces [Internet]. Bulletin of the Brazilian Mathematical Society, New Series. 2019 ; 50( 3): 771-786.Available from: http://dx.doi.org/10.1007/s00574-018-0098-4
    • Vancouver

      Gonçalves DL, Santos AP dos. Diagonal involutions and the Borsuk–Ulam property for product of surfaces [Internet]. Bulletin of the Brazilian Mathematical Society, New Series. 2019 ; 50( 3): 771-786.Available from: http://dx.doi.org/10.1007/s00574-018-0098-4

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2022