Filtros : "TEORIA QUALITATIVA" Limpar

Filtros



Refine with date range

Vocabulário Controlado do SIBiUSP


  • Source: Revista Matemática Complutense. Unidade: ICMC

    Subjects: TEORIA DAS SINGULARIDADES, TEORIA QUALITATIVA, INVARIANTES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Regilene Delazari dos Santos; REZENDE, Alex Carlucci; SCHLOMIUK, Dana; VULPE, Nicolae. Characterization and bifurcation diagram of the family of quadratic differential systems with an invariant ellipse in terms of invariant polynomials. Revista Matemática Complutense, Milan, 2021. Disponível em: < https://doi.org/10.1007/s13163-021-00398-8 > DOI: 10.1007/s13163-021-00398-8.
    • APA

      Oliveira, R. D. dos S., Rezende, A. C., Schlomiuk, D., & Vulpe, N. (2021). Characterization and bifurcation diagram of the family of quadratic differential systems with an invariant ellipse in terms of invariant polynomials. Revista Matemática Complutense. doi:10.1007/s13163-021-00398-8
    • NLM

      Oliveira RD dos S, Rezende AC, Schlomiuk D, Vulpe N. Characterization and bifurcation diagram of the family of quadratic differential systems with an invariant ellipse in terms of invariant polynomials [Internet]. Revista Matemática Complutense. 2021 ;Available from: https://doi.org/10.1007/s13163-021-00398-8
    • Vancouver

      Oliveira RD dos S, Rezende AC, Schlomiuk D, Vulpe N. Characterization and bifurcation diagram of the family of quadratic differential systems with an invariant ellipse in terms of invariant polynomials [Internet]. Revista Matemática Complutense. 2021 ;Available from: https://doi.org/10.1007/s13163-021-00398-8
  • Source: European Journal of Applied Mathematics. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, SISTEMAS DINÂMICOS

    Disponível em 2021-11-01Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LLIBRE, Jaume; OLIVEIRA, Regilene Delazari dos Santos; ZHAO, Yulin. On the birth and death of algebraic limit cycles in quadratic differential systems. European Journal of Applied Mathematics, New York, v. 32, n. 2, p. 317-336, 2021. Disponível em: < https://doi.org/10.1017/S0956792520000145 > DOI: 10.1017/S0956792520000145.
    • APA

      Llibre, J., Oliveira, R. D. dos S., & Zhao, Y. (2021). On the birth and death of algebraic limit cycles in quadratic differential systems. European Journal of Applied Mathematics, 32( 2), 317-336. doi:10.1017/S0956792520000145
    • NLM

      Llibre J, Oliveira RD dos S, Zhao Y. On the birth and death of algebraic limit cycles in quadratic differential systems [Internet]. European Journal of Applied Mathematics. 2021 ; 32( 2): 317-336.Available from: https://doi.org/10.1017/S0956792520000145
    • Vancouver

      Llibre J, Oliveira RD dos S, Zhao Y. On the birth and death of algebraic limit cycles in quadratic differential systems [Internet]. European Journal of Applied Mathematics. 2021 ; 32( 2): 317-336.Available from: https://doi.org/10.1017/S0956792520000145
  • Source: Electronic Journal of Qualitative Theory of Differential Equations. Unidade: ICMC

    Subjects: SINGULARIDADES, TEORIA QUALITATIVA, INVARIANTES

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Regilene Delazari dos Santos; SCHLOMIUK, Dana; TRAVAGLINI, Ana Maria; VALLS, Claudia. Geometry, integrability and bifurcation diagrams of a family of quadratic differential systems as application of the Darboux theory of integrability. Electronic Journal of Qualitative Theory of Differential Equations, Szeged, v. 2021, n. 45, p. 1-90, 2021. Disponível em: < https://doi.org/10.14232/ejqtde.2021.1.45 > DOI: 10.14232/ejqtde.2021.1.45.
    • APA

      Oliveira, R. D. dos S., Schlomiuk, D., Travaglini, A. M., & Valls, C. (2021). Geometry, integrability and bifurcation diagrams of a family of quadratic differential systems as application of the Darboux theory of integrability. Electronic Journal of Qualitative Theory of Differential Equations, 2021( 45), 1-90. doi:10.14232/ejqtde.2021.1.45
    • NLM

      Oliveira RD dos S, Schlomiuk D, Travaglini AM, Valls C. Geometry, integrability and bifurcation diagrams of a family of quadratic differential systems as application of the Darboux theory of integrability [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2021 ; 2021( 45): 1-90.Available from: https://doi.org/10.14232/ejqtde.2021.1.45
    • Vancouver

      Oliveira RD dos S, Schlomiuk D, Travaglini AM, Valls C. Geometry, integrability and bifurcation diagrams of a family of quadratic differential systems as application of the Darboux theory of integrability [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2021 ; 2021( 45): 1-90.Available from: https://doi.org/10.14232/ejqtde.2021.1.45
  • Source: Bulletin des Sciences Mathématiques. Unidade: ICMC

    Subjects: ANÁLISE REAL, TEORIA QUALITATIVA, TEORIA DA BIFURCAÇÃO, SOLUÇÕES PERIÓDICAS, TEORIA DO GRAU

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FEDERSON, Márcia Cristina Anderson Braz; MAWHIN, Jean; MESQUITA, Jaqueline Godoy. Existence of periodic solutions and bifurcation points for generalized ordinary differential equations. Bulletin des Sciences Mathématiques, Amsterdam, v. 169, p. 1-31, 2021. Disponível em: < https://doi.org/10.1016/j.bulsci.2021.102991 > DOI: 10.1016/j.bulsci.2021.102991.
    • APA

      Federson, M. C. A. B., Mawhin, J., & Mesquita, J. G. (2021). Existence of periodic solutions and bifurcation points for generalized ordinary differential equations. Bulletin des Sciences Mathématiques, 169, 1-31. doi:10.1016/j.bulsci.2021.102991
    • NLM

      Federson MCAB, Mawhin J, Mesquita JG. Existence of periodic solutions and bifurcation points for generalized ordinary differential equations [Internet]. Bulletin des Sciences Mathématiques. 2021 ; 169 1-31.Available from: https://doi.org/10.1016/j.bulsci.2021.102991
    • Vancouver

      Federson MCAB, Mawhin J, Mesquita JG. Existence of periodic solutions and bifurcation points for generalized ordinary differential equations [Internet]. Bulletin des Sciences Mathématiques. 2021 ; 169 1-31.Available from: https://doi.org/10.1016/j.bulsci.2021.102991
  • Source: Nonlinear Analysis : Real World Applications. Unidade: ICMC

    Subjects: INVARIANTES, SISTEMAS DIFERENCIAIS, SISTEMAS DINÂMICOS, TEORIA QUALITATIVA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MEZA-SARMIENTO, Ingrid Sofia; SILVA, Paulo Ricardo da; OLIVEIRA, Regilene Delazari dos Santos. Quadratic slow-fast systems on the plane. Nonlinear Analysis : Real World Applications, Kidlington, v. 60, p. 1-29, 2021. Disponível em: < https://doi.org/10.1016/j.nonrwa.2020.103286 > DOI: 10.1016/j.nonrwa.2020.103286.
    • APA

      Meza-Sarmiento, I. S., Silva, P. R. da, & Oliveira, R. D. dos S. (2021). Quadratic slow-fast systems on the plane. Nonlinear Analysis : Real World Applications, 60, 1-29. doi:10.1016/j.nonrwa.2020.103286
    • NLM

      Meza-Sarmiento IS, Silva PR da, Oliveira RD dos S. Quadratic slow-fast systems on the plane [Internet]. Nonlinear Analysis : Real World Applications. 2021 ; 60 1-29.Available from: https://doi.org/10.1016/j.nonrwa.2020.103286
    • Vancouver

      Meza-Sarmiento IS, Silva PR da, Oliveira RD dos S. Quadratic slow-fast systems on the plane [Internet]. Nonlinear Analysis : Real World Applications. 2021 ; 60 1-29.Available from: https://doi.org/10.1016/j.nonrwa.2020.103286
  • Source: Electronic Journal of Differential Equations. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, EQUAÇÕES NÃO LINEARES, SISTEMAS NÃO LINEARES, TEORIA DA BIFURCAÇÃO, INVARIANTES

    Versão PublicadaAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LLIBRE, Jaume; OLIVEIRA, Regilene Delazari dos Santos; RODRIGUES, Camila Aparecida Benedito. Quadratic systems with an invariant algebraic curve of degree 3 and a Darboux invariant. Electronic Journal of Differential Equations, San Marcos, v. 69, p. 1-52, 2021. Disponível em: < https://ejde.math.txstate.edu/ >.
    • APA

      Llibre, J., Oliveira, R. D. dos S., & Rodrigues, C. A. B. (2021). Quadratic systems with an invariant algebraic curve of degree 3 and a Darboux invariant. Electronic Journal of Differential Equations, 69, 1-52. Recuperado de https://ejde.math.txstate.edu/
    • NLM

      Llibre J, Oliveira RD dos S, Rodrigues CAB. Quadratic systems with an invariant algebraic curve of degree 3 and a Darboux invariant [Internet]. Electronic Journal of Differential Equations. 2021 ; 69 1-52.Available from: https://ejde.math.txstate.edu/
    • Vancouver

      Llibre J, Oliveira RD dos S, Rodrigues CAB. Quadratic systems with an invariant algebraic curve of degree 3 and a Darboux invariant [Internet]. Electronic Journal of Differential Equations. 2021 ; 69 1-52.Available from: https://ejde.math.txstate.edu/
  • Source: Mathematical Methods in the Applied Sciences. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, SOLUÇÕES PERIÓDICAS, SISTEMAS DIFERENCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LLIBRE, Jaume; OLIVEIRA, Regilene Delazari dos Santos. On the limit cycle of a Belousov-Zhabotinsky differential systems. Mathematical Methods in the Applied Sciences, Hoboken, 2021. Disponível em: < https://doi.org/10.1002/mma.7798 > DOI: 10.1002/mma.7798.
    • APA

      Llibre, J., & Oliveira, R. D. dos S. (2021). On the limit cycle of a Belousov-Zhabotinsky differential systems. Mathematical Methods in the Applied Sciences. doi:10.1002/mma.7798
    • NLM

      Llibre J, Oliveira RD dos S. On the limit cycle of a Belousov-Zhabotinsky differential systems [Internet]. Mathematical Methods in the Applied Sciences. 2021 ;Available from: https://doi.org/10.1002/mma.7798
    • Vancouver

      Llibre J, Oliveira RD dos S. On the limit cycle of a Belousov-Zhabotinsky differential systems [Internet]. Mathematical Methods in the Applied Sciences. 2021 ;Available from: https://doi.org/10.1002/mma.7798
  • Source: Regular and Chaotic Dynamics. Unidade: ICMC

    Subjects: SISTEMAS HAMILTONIANOS, SINGULARIDADES, TEORIA QUALITATIVA, MECÂNICA HAMILTONIANA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KOURLIOUROS, Konstantinos. Sections of Hamiltonian Systems. Regular and Chaotic Dynamics, Moscow, v. 26, n. 4, p. 331-349, 2021. Disponível em: < https://doi.org/10.1134/S156035472104002X > DOI: 10.1134/S156035472104002X.
    • APA

      Kourliouros, K. (2021). Sections of Hamiltonian Systems. Regular and Chaotic Dynamics, 26( 4), 331-349. doi:10.1134/S156035472104002X
    • NLM

      Kourliouros K. Sections of Hamiltonian Systems [Internet]. Regular and Chaotic Dynamics. 2021 ; 26( 4): 331-349.Available from: https://doi.org/10.1134/S156035472104002X
    • Vancouver

      Kourliouros K. Sections of Hamiltonian Systems [Internet]. Regular and Chaotic Dynamics. 2021 ; 26( 4): 331-349.Available from: https://doi.org/10.1134/S156035472104002X
  • Source: Discrete and Continuous Dynamical Systems : Series B. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, INVARIANTES, ATRATORES, CAOS (SISTEMAS DINÂMICOS)

    Disponível em 2022-04-01Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOTA, Marcos Coutinho; OLIVEIRA, Regilene Delazari dos Santos. Dynamic aspects of sprott BC chaotic system. Discrete and Continuous Dynamical Systems : Series B, Springfield, v. 26, n. 3, p. 1653-1673, 2021. Disponível em: < https://doi.org/10.3934/dcdsb.2020177 > DOI: 10.3934/dcdsb.2020177.
    • APA

      Mota, M. C., & Oliveira, R. D. dos S. (2021). Dynamic aspects of sprott BC chaotic system. Discrete and Continuous Dynamical Systems : Series B, 26( 3), 1653-1673. doi:10.3934/dcdsb.2020177
    • NLM

      Mota MC, Oliveira RD dos S. Dynamic aspects of sprott BC chaotic system [Internet]. Discrete and Continuous Dynamical Systems : Series B. 2021 ; 26( 3): 1653-1673.Available from: https://doi.org/10.3934/dcdsb.2020177
    • Vancouver

      Mota MC, Oliveira RD dos S. Dynamic aspects of sprott BC chaotic system [Internet]. Discrete and Continuous Dynamical Systems : Series B. 2021 ; 26( 3): 1653-1673.Available from: https://doi.org/10.3934/dcdsb.2020177
  • Source: Electronic Journal of Qualitative Theory of Differential Equations. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, ANÁLISE GLOBAL

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARTÉS, Joan Carles; MOTA, Marcos Coutinho; REZENDE, Alex Carlucci. Structurally unstable quadratic vector fields of codimension two: families possessing a finite saddle-node and an infinite saddle-node. Electronic Journal of Qualitative Theory of Differential Equations, Szeged, v. 2021, n. 35, p. 1-89, 2021. Disponível em: < https://doi.org/10.14232/ejqtde.2021.1.35 > DOI: 10.14232/ejqtde.2021.1.35.
    • APA

      Artés, J. C., Mota, M. C., & Rezende, A. C. (2021). Structurally unstable quadratic vector fields of codimension two: families possessing a finite saddle-node and an infinite saddle-node. Electronic Journal of Qualitative Theory of Differential Equations, 2021( 35), 1-89. doi:10.14232/ejqtde.2021.1.35
    • NLM

      Artés JC, Mota MC, Rezende AC. Structurally unstable quadratic vector fields of codimension two: families possessing a finite saddle-node and an infinite saddle-node [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2021 ; 2021( 35): 1-89.Available from: https://doi.org/10.14232/ejqtde.2021.1.35
    • Vancouver

      Artés JC, Mota MC, Rezende AC. Structurally unstable quadratic vector fields of codimension two: families possessing a finite saddle-node and an infinite saddle-node [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2021 ; 2021( 35): 1-89.Available from: https://doi.org/10.14232/ejqtde.2021.1.35
  • Source: Electronic Journal of Qualitative Theory of Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, TEORIA QUALITATIVA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Regilene Delazari dos Santos; SCHLOMIUK, Dana; TRAVAGLINI, Ana Maria. Geometry and integrability of quadratic systems with invariant hyperbolas. Electronic Journal of Qualitative Theory of Differential Equations, Szeged, v. 2021, n. 6, p. 1-56, 2021. Disponível em: < https://doi.org/10.14232/ejqtde.2021.1.6 > DOI: 10.14232/ejqtde.2021.1.6.
    • APA

      Oliveira, R. D. dos S., Schlomiuk, D., & Travaglini, A. M. (2021). Geometry and integrability of quadratic systems with invariant hyperbolas. Electronic Journal of Qualitative Theory of Differential Equations, 2021( 6), 1-56. doi:10.14232/ejqtde.2021.1.6
    • NLM

      Oliveira RD dos S, Schlomiuk D, Travaglini AM. Geometry and integrability of quadratic systems with invariant hyperbolas [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2021 ; 2021( 6): 1-56.Available from: https://doi.org/10.14232/ejqtde.2021.1.6
    • Vancouver

      Oliveira RD dos S, Schlomiuk D, Travaglini AM. Geometry and integrability of quadratic systems with invariant hyperbolas [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2021 ; 2021( 6): 1-56.Available from: https://doi.org/10.14232/ejqtde.2021.1.6
  • Source: Calculus of Variations and Partial Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS, EQUAÇÕES DIFERENCIAIS PARCIAIS DE 2ª ORDEM, TEORIA QUALITATIVA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, João Vitor da; NORNBERG, Gabrielle. Regularity estimates for fully nonlinear elliptic PDEs with general Hamiltonian terms and unbounded ingredients. Calculus of Variations and Partial Differential Equations, Heidelberg, v. 60, n. 6, p. 1-40, 2021. Disponível em: < https://doi.org/10.1007/s00526-021-02082-7 > DOI: 10.1007/s00526-021-02082-7.
    • APA

      Silva, J. V. da, & Nornberg, G. (2021). Regularity estimates for fully nonlinear elliptic PDEs with general Hamiltonian terms and unbounded ingredients. Calculus of Variations and Partial Differential Equations, 60( 6), 1-40. doi:10.1007/s00526-021-02082-7
    • NLM

      Silva JV da, Nornberg G. Regularity estimates for fully nonlinear elliptic PDEs with general Hamiltonian terms and unbounded ingredients [Internet]. Calculus of Variations and Partial Differential Equations. 2021 ; 60( 6): 1-40.Available from: https://doi.org/10.1007/s00526-021-02082-7
    • Vancouver

      Silva JV da, Nornberg G. Regularity estimates for fully nonlinear elliptic PDEs with general Hamiltonian terms and unbounded ingredients [Internet]. Calculus of Variations and Partial Differential Equations. 2021 ; 60( 6): 1-40.Available from: https://doi.org/10.1007/s00526-021-02082-7
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, EQUAÇÕES NÃO LINEARES, SISTEMAS NÃO LINEARES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARTÉS, Joan C; OLIVEIRA, Regilene Delazari dos Santos; REZENDE, Alex Carlucci. Structurally unstable quadratic vector fields of codimension two: families possessing either a cusp point or two finite saddle-nodes. Journal of Dynamics and Differential Equations, New York, 2020. Disponível em: < https://doi.org/10.1007/s10884-020-09871-2 > DOI: 10.1007/s10884-020-09871-2.
    • APA

      Artés, J. C., Oliveira, R. D. dos S., & Rezende, A. C. (2020). Structurally unstable quadratic vector fields of codimension two: families possessing either a cusp point or two finite saddle-nodes. Journal of Dynamics and Differential Equations. doi:10.1007/s10884-020-09871-2
    • NLM

      Artés JC, Oliveira RD dos S, Rezende AC. Structurally unstable quadratic vector fields of codimension two: families possessing either a cusp point or two finite saddle-nodes [Internet]. Journal of Dynamics and Differential Equations. 2020 ;Available from: https://doi.org/10.1007/s10884-020-09871-2
    • Vancouver

      Artés JC, Oliveira RD dos S, Rezende AC. Structurally unstable quadratic vector fields of codimension two: families possessing either a cusp point or two finite saddle-nodes [Internet]. Journal of Dynamics and Differential Equations. 2020 ;Available from: https://doi.org/10.1007/s10884-020-09871-2
  • Source: Fundamenta Mathematicae. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA DO ÍNDICE, EQUAÇÕES DIFERENCIAIS FUNCIONAIS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, TEORIA QUALITATIVA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBINATTO, Maria do Carmo; RYBAKOWSKI, Krzysztof P. Conley index continuation for some classes of RFDEs on manifolds. Fundamenta Mathematicae, Warszawa, v. 250, p. 41-62, 2020. Disponível em: < https://doi.org/10.4064/fm700-8-2019 > DOI: 10.4064/fm700-8-2019.
    • APA

      Carbinatto, M. do C., & Rybakowski, K. P. (2020). Conley index continuation for some classes of RFDEs on manifolds. Fundamenta Mathematicae, 250, 41-62. doi:10.4064/fm700-8-2019
    • NLM

      Carbinatto M do C, Rybakowski KP. Conley index continuation for some classes of RFDEs on manifolds [Internet]. Fundamenta Mathematicae. 2020 ; 250 41-62.Available from: https://doi.org/10.4064/fm700-8-2019
    • Vancouver

      Carbinatto M do C, Rybakowski KP. Conley index continuation for some classes of RFDEs on manifolds [Internet]. Fundamenta Mathematicae. 2020 ; 250 41-62.Available from: https://doi.org/10.4064/fm700-8-2019
  • Source: Nonlinear Analysis. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, SISTEMAS DINÂMICOS

    Disponível em 2022-09-01Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DUKARIC, Masa; FERNANDES, Wilker; OLIVEIRA, Regilene Delazari dos Santos. Symmetric centers on planar cubic differential systems. Nonlinear Analysis, Kidlington, v. 197, p. 1-14, 2020. Disponível em: < https://doi.org/10.1016/j.na.2020.111868 > DOI: 10.1016/j.na.2020.111868.
    • APA

      Dukaric, M., Fernandes, W., & Oliveira, R. D. dos S. (2020). Symmetric centers on planar cubic differential systems. Nonlinear Analysis, 197, 1-14. doi:10.1016/j.na.2020.111868
    • NLM

      Dukaric M, Fernandes W, Oliveira RD dos S. Symmetric centers on planar cubic differential systems [Internet]. Nonlinear Analysis. 2020 ; 197 1-14.Available from: https://doi.org/10.1016/j.na.2020.111868
    • Vancouver

      Dukaric M, Fernandes W, Oliveira RD dos S. Symmetric centers on planar cubic differential systems [Internet]. Nonlinear Analysis. 2020 ; 197 1-14.Available from: https://doi.org/10.1016/j.na.2020.111868
  • Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, INVARIANTES

    Versão PublicadaAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOTA, Marcos Coutinho; OLIVEIRA, Regilene Delazari dos Santos; REZENDE, Alex Carlucci; SCHLOMIUK, Dana; VULPE, Nicolae. Geometric analysis of quadratic differential systems with invariant ellipses. [S.l: s.n.], 2019.Disponível em: .
    • APA

      Mota, M. C., Oliveira, R. D. dos S., Rezende, A. C., Schlomiuk, D., & Vulpe, N. (2019). Geometric analysis of quadratic differential systems with invariant ellipses. São Carlos: ICMC-USP. Recuperado de https://repositorio.usp.br/item/003005920
    • NLM

      Mota MC, Oliveira RD dos S, Rezende AC, Schlomiuk D, Vulpe N. Geometric analysis of quadratic differential systems with invariant ellipses [Internet]. 2019 ;Available from: https://repositorio.usp.br/item/003005920
    • Vancouver

      Mota MC, Oliveira RD dos S, Rezende AC, Schlomiuk D, Vulpe N. Geometric analysis of quadratic differential systems with invariant ellipses [Internet]. 2019 ;Available from: https://repositorio.usp.br/item/003005920
  • Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, EQUAÇÕES NÃO LINEARES, SISTEMAS NÃO LINEARES

    Versão PublicadaAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARTÉS, Joan C; OLIVEIRA, Regilene Delazari dos Santos; REZENDE, Alex Carlucci. Structurally unstable quadratic vector fields of codimension two: families possessing either a cusp point or two finite saddle-nodes. [S.l: s.n.], 2019.Disponível em: .
    • APA

      Artés, J. C., Oliveira, R. D. dos S., & Rezende, A. C. (2019). Structurally unstable quadratic vector fields of codimension two: families possessing either a cusp point or two finite saddle-nodes. São Carlos: ICMC-USP. Recuperado de http://repositorio.icmc.usp.br//handle/RIICMC/6876
    • NLM

      Artés JC, Oliveira RD dos S, Rezende AC. Structurally unstable quadratic vector fields of codimension two: families possessing either a cusp point or two finite saddle-nodes [Internet]. 2019 ;Available from: http://repositorio.icmc.usp.br//handle/RIICMC/6876
    • Vancouver

      Artés JC, Oliveira RD dos S, Rezende AC. Structurally unstable quadratic vector fields of codimension two: families possessing either a cusp point or two finite saddle-nodes [Internet]. 2019 ;Available from: http://repositorio.icmc.usp.br//handle/RIICMC/6876
  • Source: Discrete and Continuous Dynamical Systems. Unidade: ICMC

    Subjects: EQUAÇÕES ALGÉBRICAS DIFERENCIAIS, TEORIA QUALITATIVA, ANÉIS E ÁLGEBRAS COMUTATIVOS, SIMETRIA, REPRESENTAÇÕES DE GRUPOS COMPACTOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MANOEL, Miriam Garcia; TEMPESTA, Patrícia. Binary differential equations with symmetries. Discrete and Continuous Dynamical Systems, Springfield, v. 39, n. 4, p. 1957-1974, 2019. Disponível em: < http://dx.doi.org/10.3934/dcds.2019082 > DOI: 10.3934/dcds.2019082.
    • APA

      Manoel, M. G., & Tempesta, P. (2019). Binary differential equations with symmetries. Discrete and Continuous Dynamical Systems, 39( 4), 1957-1974. doi:10.3934/dcds.2019082
    • NLM

      Manoel MG, Tempesta P. Binary differential equations with symmetries [Internet]. Discrete and Continuous Dynamical Systems. 2019 ; 39( 4): 1957-1974.Available from: http://dx.doi.org/10.3934/dcds.2019082
    • Vancouver

      Manoel MG, Tempesta P. Binary differential equations with symmetries [Internet]. Discrete and Continuous Dynamical Systems. 2019 ; 39( 4): 1957-1974.Available from: http://dx.doi.org/10.3934/dcds.2019082
  • Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, SISTEMAS DIFERENCIAIS, EQUAÇÕES DIFERENCIAIS

    Versão PublicadaAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LLIBRE, Jaume; OLIVEIRA, Regilene Delazari dos Santos. On the limit cycle of a Belousov-Zabotinsky differential systems. [S.l: s.n.], 2019.Disponível em: .
    • APA

      Llibre, J., & Oliveira, R. D. dos S. (2019). On the limit cycle of a Belousov-Zabotinsky differential systems. São Carlos: ICMC-USP. Recuperado de http://repositorio.icmc.usp.br//handle/RIICMC/6874
    • NLM

      Llibre J, Oliveira RD dos S. On the limit cycle of a Belousov-Zabotinsky differential systems [Internet]. 2019 ;Available from: http://repositorio.icmc.usp.br//handle/RIICMC/6874
    • Vancouver

      Llibre J, Oliveira RD dos S. On the limit cycle of a Belousov-Zabotinsky differential systems [Internet]. 2019 ;Available from: http://repositorio.icmc.usp.br//handle/RIICMC/6874
  • Source: Bulletin des Sciences Mathematiques. Unidade: ICMC

    Subjects: SIMETRIA, TEORIA QUALITATIVA, ANÉIS E ÁLGEBRAS COMUTATIVOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BAPTISTELLI, Patrícia Hernandes; MANOEL, Miriam Garcia; ZELI, Iris de Oliveira. Normal forms of bireversible vector fields. Bulletin des Sciences Mathematiques, Amsterdam, v. 154, p. 102-126, 2019. Disponível em: < http://dx.doi.org/10.1016/j.bulsci.2019.02.002 > DOI: 10.1016/j.bulsci.2019.02.002.
    • APA

      Baptistelli, P. H., Manoel, M. G., & Zeli, I. de O. (2019). Normal forms of bireversible vector fields. Bulletin des Sciences Mathematiques, 154, 102-126. doi:10.1016/j.bulsci.2019.02.002
    • NLM

      Baptistelli PH, Manoel MG, Zeli I de O. Normal forms of bireversible vector fields [Internet]. Bulletin des Sciences Mathematiques. 2019 ; 154 102-126.Available from: http://dx.doi.org/10.1016/j.bulsci.2019.02.002
    • Vancouver

      Baptistelli PH, Manoel MG, Zeli I de O. Normal forms of bireversible vector fields [Internet]. Bulletin des Sciences Mathematiques. 2019 ; 154 102-126.Available from: http://dx.doi.org/10.1016/j.bulsci.2019.02.002

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2021