Filters : "INVARIANTES" Limpar

Filters



Refine with date range

Vocabulário Controlado do SIBiUSP


  • Source: Revista Matemática Complutense. Unidade: ICMC

    Subjects: TEORIA DAS SINGULARIDADES, TEORIA QUALITATIVA, INVARIANTES

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Regilene Delazari dos Santos et al. Characterization and bifurcation diagram of the family of quadratic differential systems with an invariant ellipse in terms of invariant polynomials. Revista Matemática Complutense, v. 35, n. 2, p. 361-413, 2022Tradução . . Disponível em: https://doi.org/10.1007/s13163-021-00398-8. Acesso em: 06 jul. 2022.
    • APA

      Oliveira, R. D. dos S., Rezende, A. C., Schlomiuk, D., & Vulpe, N. (2022). Characterization and bifurcation diagram of the family of quadratic differential systems with an invariant ellipse in terms of invariant polynomials. Revista Matemática Complutense, 35( 2), 361-413. doi:10.1007/s13163-021-00398-8
    • NLM

      Oliveira RD dos S, Rezende AC, Schlomiuk D, Vulpe N. Characterization and bifurcation diagram of the family of quadratic differential systems with an invariant ellipse in terms of invariant polynomials [Internet]. Revista Matemática Complutense. 2022 ; 35( 2): 361-413.[citado 2022 jul. 06 ] Available from: https://doi.org/10.1007/s13163-021-00398-8
    • Vancouver

      Oliveira RD dos S, Rezende AC, Schlomiuk D, Vulpe N. Characterization and bifurcation diagram of the family of quadratic differential systems with an invariant ellipse in terms of invariant polynomials [Internet]. Revista Matemática Complutense. 2022 ; 35( 2): 361-413.[citado 2022 jul. 06 ] Available from: https://doi.org/10.1007/s13163-021-00398-8
  • Source: São Paulo Journal of Mathematical Sciences. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, INVARIANTES

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CORTES, Wagner e MARCOS, Eduardo do Nascimento. Description of partial actions. São Paulo Journal of Mathematical Sciences, v. 15, n. 2, p. 929-939, 2021Tradução . . Disponível em: https://doi.org/10.1007/s40863-021-00265-w. Acesso em: 06 jul. 2022.
    • APA

      Cortes, W., & Marcos, E. do N. (2021). Description of partial actions. São Paulo Journal of Mathematical Sciences, 15( 2), 929-939. doi:10.1007/s40863-021-00265-w
    • NLM

      Cortes W, Marcos E do N. Description of partial actions [Internet]. São Paulo Journal of Mathematical Sciences. 2021 ; 15( 2): 929-939.[citado 2022 jul. 06 ] Available from: https://doi.org/10.1007/s40863-021-00265-w
    • Vancouver

      Cortes W, Marcos E do N. Description of partial actions [Internet]. São Paulo Journal of Mathematical Sciences. 2021 ; 15( 2): 929-939.[citado 2022 jul. 06 ] Available from: https://doi.org/10.1007/s40863-021-00265-w
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: SIMETRIA, INVARIANTES, EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS DE 2ª ORDEM

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Wendel Leite da e SANTOS, Ederson Moreira dos. Asymptotic profile and Morse index of the radial solutions of the Hénon equation. Journal of Differential Equations, v. 287, p. 212-235, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2021.03.050. Acesso em: 06 jul. 2022.
    • APA

      Silva, W. L. da, & Santos, E. M. dos. (2021). Asymptotic profile and Morse index of the radial solutions of the Hénon equation. Journal of Differential Equations, 287, 212-235. doi:10.1016/j.jde.2021.03.050
    • NLM

      Silva WL da, Santos EM dos. Asymptotic profile and Morse index of the radial solutions of the Hénon equation [Internet]. Journal of Differential Equations. 2021 ; 287 212-235.[citado 2022 jul. 06 ] Available from: https://doi.org/10.1016/j.jde.2021.03.050
    • Vancouver

      Silva WL da, Santos EM dos. Asymptotic profile and Morse index of the radial solutions of the Hénon equation [Internet]. Journal of Differential Equations. 2021 ; 287 212-235.[citado 2022 jul. 06 ] Available from: https://doi.org/10.1016/j.jde.2021.03.050
  • Source: Israel Journal of Mathematics. Unidade: ICMC

    Subjects: SINGULARIDADES, INVARIANTES

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FREITAS, Thiago Henrique de e PÉREZ, Victor Hugo Jorge e MIRANDA, Aldício José. Gluing of analytic space germs, invariants and Watanabe's conjecture. Israel Journal of Mathematics, v. 246, n. 1, p. 211-237, 2021Tradução . . Disponível em: https://doi.org/10.1007/s11856-021-2241-y. Acesso em: 06 jul. 2022.
    • APA

      Freitas, T. H. de, Pérez, V. H. J., & Miranda, A. J. (2021). Gluing of analytic space germs, invariants and Watanabe's conjecture. Israel Journal of Mathematics, 246( 1), 211-237. doi:10.1007/s11856-021-2241-y
    • NLM

      Freitas TH de, Pérez VHJ, Miranda AJ. Gluing of analytic space germs, invariants and Watanabe's conjecture [Internet]. Israel Journal of Mathematics. 2021 ; 246( 1): 211-237.[citado 2022 jul. 06 ] Available from: https://doi.org/10.1007/s11856-021-2241-y
    • Vancouver

      Freitas TH de, Pérez VHJ, Miranda AJ. Gluing of analytic space germs, invariants and Watanabe's conjecture [Internet]. Israel Journal of Mathematics. 2021 ; 246( 1): 211-237.[citado 2022 jul. 06 ] Available from: https://doi.org/10.1007/s11856-021-2241-y
  • Source: International Journal of Bifurcation and Chaos. Unidade: ICMC

    Subjects: SISTEMAS DIFERENCIAIS, TEORIA DA BIFURCAÇÃO, INVARIANTES

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARTÉS, Joan Carles e MOTA, Marcos Coutinho e REZENDE, Alex Carlucci. Quadratic differential systems with a finite saddle-node and an infinite saddle-node (1, 1)SN - (A). International Journal of Bifurcation and Chaos, v. 31, n. 2, p. 2150026-1-2150026-24, 2021Tradução . . Disponível em: https://dx.doi.org/10.1142/S0218127421500267. Acesso em: 06 jul. 2022.
    • APA

      Artés, J. C., Mota, M. C., & Rezende, A. C. (2021). Quadratic differential systems with a finite saddle-node and an infinite saddle-node (1, 1)SN - (A). International Journal of Bifurcation and Chaos, 31( 2), 2150026-1-2150026-24. doi:10.1142/S0218127421500267
    • NLM

      Artés JC, Mota MC, Rezende AC. Quadratic differential systems with a finite saddle-node and an infinite saddle-node (1, 1)SN - (A) [Internet]. International Journal of Bifurcation and Chaos. 2021 ; 31( 2): 2150026-1-2150026-24.[citado 2022 jul. 06 ] Available from: https://dx.doi.org/10.1142/S0218127421500267
    • Vancouver

      Artés JC, Mota MC, Rezende AC. Quadratic differential systems with a finite saddle-node and an infinite saddle-node (1, 1)SN - (A) [Internet]. International Journal of Bifurcation and Chaos. 2021 ; 31( 2): 2150026-1-2150026-24.[citado 2022 jul. 06 ] Available from: https://dx.doi.org/10.1142/S0218127421500267
  • Source: Electronic Journal of Qualitative Theory of Differential Equations. Unidade: ICMC

    Subjects: SINGULARIDADES, TEORIA QUALITATIVA, INVARIANTES

    Versão PublicadaOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Regilene Delazari dos Santos et al. Geometry, integrability and bifurcation diagrams of a family of quadratic differential systems as application of the Darboux theory of integrability. Electronic Journal of Qualitative Theory of Differential Equations, v. 2021, n. 45, p. 1-90, 2021Tradução . . Disponível em: https://doi.org/10.14232/ejqtde.2021.1.45. Acesso em: 06 jul. 2022.
    • APA

      Oliveira, R. D. dos S., Schlomiuk, D., Travaglini, A. M., & Valls, C. (2021). Geometry, integrability and bifurcation diagrams of a family of quadratic differential systems as application of the Darboux theory of integrability. Electronic Journal of Qualitative Theory of Differential Equations, 2021( 45), 1-90. doi:10.14232/ejqtde.2021.1.45
    • NLM

      Oliveira RD dos S, Schlomiuk D, Travaglini AM, Valls C. Geometry, integrability and bifurcation diagrams of a family of quadratic differential systems as application of the Darboux theory of integrability [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2021 ; 2021( 45): 1-90.[citado 2022 jul. 06 ] Available from: https://doi.org/10.14232/ejqtde.2021.1.45
    • Vancouver

      Oliveira RD dos S, Schlomiuk D, Travaglini AM, Valls C. Geometry, integrability and bifurcation diagrams of a family of quadratic differential systems as application of the Darboux theory of integrability [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2021 ; 2021( 45): 1-90.[citado 2022 jul. 06 ] Available from: https://doi.org/10.14232/ejqtde.2021.1.45
  • Unidade: ICMC

    Subjects: SISTEMAS DIFERENCIAIS, TEORIA DA BIFURCAÇÃO, ESTABILIDADE ESTRUTURAL, INVARIANTES, CURVAS ALGÉBRICAS

    Online source accessHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOTA, Marcos Coutinho. Geometrical and topological investigation of some families of quadratic differential systems possessing saddle-nodes or invariant ellipses. 2021. Tese (Doutorado) – Universidade de São Paulo, São Carlos, 2021. Disponível em: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-18052021-121432/. Acesso em: 06 jul. 2022.
    • APA

      Mota, M. C. (2021). Geometrical and topological investigation of some families of quadratic differential systems possessing saddle-nodes or invariant ellipses (Tese (Doutorado). Universidade de São Paulo, São Carlos. Recuperado de https://www.teses.usp.br/teses/disponiveis/55/55135/tde-18052021-121432/
    • NLM

      Mota MC. Geometrical and topological investigation of some families of quadratic differential systems possessing saddle-nodes or invariant ellipses [Internet]. 2021 ;[citado 2022 jul. 06 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-18052021-121432/
    • Vancouver

      Mota MC. Geometrical and topological investigation of some families of quadratic differential systems possessing saddle-nodes or invariant ellipses [Internet]. 2021 ;[citado 2022 jul. 06 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-18052021-121432/
  • Source: Nonlinear Analysis : Real World Applications. Unidade: ICMC

    Subjects: INVARIANTES, SISTEMAS DIFERENCIAIS, SISTEMAS DINÂMICOS, TEORIA QUALITATIVA

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MEZA-SARMIENTO, Ingrid Sofia e OLIVEIRA, Regilene Delazari dos Santos e SILVA, Paulo Ricardo da. Quadratic slow-fast systems on the plane. Nonlinear Analysis : Real World Applications, v. 60, p. 1-29, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.nonrwa.2020.103286. Acesso em: 06 jul. 2022.
    • APA

      Meza-Sarmiento, I. S., Oliveira, R. D. dos S., & Silva, P. R. da. (2021). Quadratic slow-fast systems on the plane. Nonlinear Analysis : Real World Applications, 60, 1-29. doi:10.1016/j.nonrwa.2020.103286
    • NLM

      Meza-Sarmiento IS, Oliveira RD dos S, Silva PR da. Quadratic slow-fast systems on the plane [Internet]. Nonlinear Analysis : Real World Applications. 2021 ; 60 1-29.[citado 2022 jul. 06 ] Available from: https://doi.org/10.1016/j.nonrwa.2020.103286
    • Vancouver

      Meza-Sarmiento IS, Oliveira RD dos S, Silva PR da. Quadratic slow-fast systems on the plane [Internet]. Nonlinear Analysis : Real World Applications. 2021 ; 60 1-29.[citado 2022 jul. 06 ] Available from: https://doi.org/10.1016/j.nonrwa.2020.103286
  • Source: Electronic Journal of Differential Equations. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, EQUAÇÕES NÃO LINEARES, SISTEMAS NÃO LINEARES, TEORIA DA BIFURCAÇÃO, INVARIANTES

    Versão PublicadaOnline source accessHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LLIBRE, Jaume e OLIVEIRA, Regilene Delazari dos Santos e RODRIGUES, Camila Aparecida Benedito. Quadratic systems with an invariant algebraic curve of degree 3 and a Darboux invariant. Electronic Journal of Differential Equations, v. 69, p. 1-52, 2021Tradução . . Disponível em: https://ejde.math.txstate.edu/. Acesso em: 06 jul. 2022.
    • APA

      Llibre, J., Oliveira, R. D. dos S., & Rodrigues, C. A. B. (2021). Quadratic systems with an invariant algebraic curve of degree 3 and a Darboux invariant. Electronic Journal of Differential Equations, 69, 1-52. Recuperado de https://ejde.math.txstate.edu/
    • NLM

      Llibre J, Oliveira RD dos S, Rodrigues CAB. Quadratic systems with an invariant algebraic curve of degree 3 and a Darboux invariant [Internet]. Electronic Journal of Differential Equations. 2021 ; 69 1-52.[citado 2022 jul. 06 ] Available from: https://ejde.math.txstate.edu/
    • Vancouver

      Llibre J, Oliveira RD dos S, Rodrigues CAB. Quadratic systems with an invariant algebraic curve of degree 3 and a Darboux invariant [Internet]. Electronic Journal of Differential Equations. 2021 ; 69 1-52.[citado 2022 jul. 06 ] Available from: https://ejde.math.txstate.edu/
  • Unidade: ICMC

    Subjects: TOPOLOGIA ALGÉBRICA, CATEGORIAS TOPOLÓGICAS, FIBRAÇÕES, INVARIANTES

    Online source accessHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LIER, Matias de Jong van. Topological Complexity and the Lusternik-Schnirelmann Category. 2021. Dissertação (Mestrado) – Universidade de São Paulo, São Carlos, 2021. Disponível em: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-09092021-104209/. Acesso em: 06 jul. 2022.
    • APA

      Lier, M. de J. van. (2021). Topological Complexity and the Lusternik-Schnirelmann Category (Dissertação (Mestrado). Universidade de São Paulo, São Carlos. Recuperado de https://www.teses.usp.br/teses/disponiveis/55/55135/tde-09092021-104209/
    • NLM

      Lier M de J van. Topological Complexity and the Lusternik-Schnirelmann Category [Internet]. 2021 ;[citado 2022 jul. 06 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-09092021-104209/
    • Vancouver

      Lier M de J van. Topological Complexity and the Lusternik-Schnirelmann Category [Internet]. 2021 ;[citado 2022 jul. 06 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-09092021-104209/
  • Source: Bulletin of the Brazilian Mathematical Society : New Series. Unidade: ICMC

    Subjects: SINGULARIDADES, TEORIA DAS SINGULARIDADES, INVARIANTES

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KOURLIOUROS, Konstantinos. The Milnor-Palamodov theorem for functions on isolated hypersurface singularities. Bulletin of the Brazilian Mathematical Society : New Series, v. 52, n. 2, p. 405-413, 2021Tradução . . Disponível em: https://doi.org/10.1007/s00574-020-00209-6. Acesso em: 06 jul. 2022.
    • APA

      Kourliouros, K. (2021). The Milnor-Palamodov theorem for functions on isolated hypersurface singularities. Bulletin of the Brazilian Mathematical Society : New Series, 52( 2), 405-413. doi:10.1007/s00574-020-00209-6
    • NLM

      Kourliouros K. The Milnor-Palamodov theorem for functions on isolated hypersurface singularities [Internet]. Bulletin of the Brazilian Mathematical Society : New Series. 2021 ; 52( 2): 405-413.[citado 2022 jul. 06 ] Available from: https://doi.org/10.1007/s00574-020-00209-6
    • Vancouver

      Kourliouros K. The Milnor-Palamodov theorem for functions on isolated hypersurface singularities [Internet]. Bulletin of the Brazilian Mathematical Society : New Series. 2021 ; 52( 2): 405-413.[citado 2022 jul. 06 ] Available from: https://doi.org/10.1007/s00574-020-00209-6
  • Source: Discrete and Continuous Dynamical Systems : Series B. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, INVARIANTES, ATRATORES, CAOS (SISTEMAS DINÂMICOS)

    Versão AceitaOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOTA, Marcos Coutinho e OLIVEIRA, Regilene Delazari dos Santos. Dynamic aspects of sprott BC chaotic system. Discrete and Continuous Dynamical Systems : Series B, v. 26, n. 3, p. 1653-1673, 2021Tradução . . Disponível em: https://doi.org/10.3934/dcdsb.2020177. Acesso em: 06 jul. 2022.
    • APA

      Mota, M. C., & Oliveira, R. D. dos S. (2021). Dynamic aspects of sprott BC chaotic system. Discrete and Continuous Dynamical Systems : Series B, 26( 3), 1653-1673. doi:10.3934/dcdsb.2020177
    • NLM

      Mota MC, Oliveira RD dos S. Dynamic aspects of sprott BC chaotic system [Internet]. Discrete and Continuous Dynamical Systems : Series B. 2021 ; 26( 3): 1653-1673.[citado 2022 jul. 06 ] Available from: https://doi.org/10.3934/dcdsb.2020177
    • Vancouver

      Mota MC, Oliveira RD dos S. Dynamic aspects of sprott BC chaotic system [Internet]. Discrete and Continuous Dynamical Systems : Series B. 2021 ; 26( 3): 1653-1673.[citado 2022 jul. 06 ] Available from: https://doi.org/10.3934/dcdsb.2020177
  • Unidade: ICMC

    Subjects: CURVAS ALGÉBRICAS, CORPOS FINITOS, INVARIANTES, CURVAS ELÍTICAS

    Online source accessHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JÚNIOR, Cirilo Gonçalves. On Fq3-Frobenius nonclassical curvces of type Yq2. 2020. Tese (Doutorado) – Universidade de São Paulo, São Carlos, 2020. Disponível em: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-10062020-134739/. Acesso em: 06 jul. 2022.
    • APA

      Júnior, C. G. (2020). On Fq3-Frobenius nonclassical curvces of type Yq2 (Tese (Doutorado). Universidade de São Paulo, São Carlos. Recuperado de https://www.teses.usp.br/teses/disponiveis/55/55135/tde-10062020-134739/
    • NLM

      Júnior CG. On Fq3-Frobenius nonclassical curvces of type Yq2
    • Vancouver

      Júnior CG. On Fq3-Frobenius nonclassical curvces of type Yq2
  • Source: Journal of Geometric Analysis. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, ATRATORES, INVARIANTES, ESTABILIDADE DE SISTEMAS, CONTROLABILIDADE, TEORIA DAS SINGULARIDADES

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e KALITA, Piotr. On attractors of generalized semiflows with impulses. Journal of Geometric Analysis, v. 30, p. 1412–1449, 2020Tradução . . Disponível em: https://doi.org/10.1007/s12220-019-00143-0. Acesso em: 06 jul. 2022.
    • APA

      Bonotto, E. de M., & Kalita, P. (2020). On attractors of generalized semiflows with impulses. Journal of Geometric Analysis, 30, 1412–1449. doi:10.1007/s12220-019-00143-0
    • NLM

      Bonotto E de M, Kalita P. On attractors of generalized semiflows with impulses [Internet]. Journal of Geometric Analysis. 2020 ; 30 1412–1449.[citado 2022 jul. 06 ] Available from: https://doi.org/10.1007/s12220-019-00143-0
    • Vancouver

      Bonotto E de M, Kalita P. On attractors of generalized semiflows with impulses [Internet]. Journal of Geometric Analysis. 2020 ; 30 1412–1449.[citado 2022 jul. 06 ] Available from: https://doi.org/10.1007/s12220-019-00143-0
  • Source: Celestial Mechanics and Dynamical Astronomy. Unidade: IF

    Subjects: ASTRONOMIA, CAOS (SISTEMAS DINÂMICOS), INVARIANTES, SISTEMAS DINÂMICOS (FÍSICA MATEMÁTICA), ÓRBITA

    Versão PublicadaOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Vitor Martins de e SILVA, Priscilla A. Sousa e CALDAS, Iberê Luiz. Order-chaos-order and invariant manifolds in the bounded planar Earth–Moon system. Celestial Mechanics and Dynamical Astronomy, v. 132, n. 51, 2020Tradução . . Disponível em: https://doi.org/10.1007/s10569-020-09989-x. Acesso em: 06 jul. 2022.
    • APA

      Oliveira, V. M. de, Silva, P. A. S., & Caldas, I. L. (2020). Order-chaos-order and invariant manifolds in the bounded planar Earth–Moon system. Celestial Mechanics and Dynamical Astronomy, 132( 51). doi:10.1007/s10569-020-09989-x
    • NLM

      Oliveira VM de, Silva PAS, Caldas IL. Order-chaos-order and invariant manifolds in the bounded planar Earth–Moon system [Internet]. Celestial Mechanics and Dynamical Astronomy. 2020 ; 132( 51):[citado 2022 jul. 06 ] Available from: https://doi.org/10.1007/s10569-020-09989-x
    • Vancouver

      Oliveira VM de, Silva PAS, Caldas IL. Order-chaos-order and invariant manifolds in the bounded planar Earth–Moon system [Internet]. Celestial Mechanics and Dynamical Astronomy. 2020 ; 132( 51):[citado 2022 jul. 06 ] Available from: https://doi.org/10.1007/s10569-020-09989-x
  • Source: Electronic Journal of Differential Equations. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, INVARIANTES

    Versão PublicadaOnline source accessHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Regilene Delazari dos Santos e VALLS, Claudia. Global dynamics of the May-Leonard system with a Darboux invariant. Electronic Journal of Differential Equations, v. 2020, n. 55, p. 1-19, 2020Tradução . . Disponível em: https://ejde.math.txstate.edu/Volumes/2020/55/oliveira.pdf. Acesso em: 06 jul. 2022.
    • APA

      Oliveira, R. D. dos S., & Valls, C. (2020). Global dynamics of the May-Leonard system with a Darboux invariant. Electronic Journal of Differential Equations, 2020( 55), 1-19. Recuperado de https://ejde.math.txstate.edu/Volumes/2020/55/oliveira.pdf
    • NLM

      Oliveira RD dos S, Valls C. Global dynamics of the May-Leonard system with a Darboux invariant [Internet]. Electronic Journal of Differential Equations. 2020 ; 2020( 55): 1-19.[citado 2022 jul. 06 ] Available from: https://ejde.math.txstate.edu/Volumes/2020/55/oliveira.pdf
    • Vancouver

      Oliveira RD dos S, Valls C. Global dynamics of the May-Leonard system with a Darboux invariant [Internet]. Electronic Journal of Differential Equations. 2020 ; 2020( 55): 1-19.[citado 2022 jul. 06 ] Available from: https://ejde.math.txstate.edu/Volumes/2020/55/oliveira.pdf
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: TOPOLOGIA DINÂMICA, TRANSVERSALIDADE, EQUAÇÕES DIFERENCIAIS PARCIAIS, INVARIANTES

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORTOLAN, Matheus Cheque et al. Lipschitz perturbations of Morse-Smale semigroups. Journal of Differential Equations, v. 269, n. 3, p. 1904-1943, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2020.01.024. Acesso em: 06 jul. 2022.
    • APA

      Bortolan, M. C., Cardoso, C. A. E. das N., Carvalho, A. N. de, & Pires, L. (2020). Lipschitz perturbations of Morse-Smale semigroups. Journal of Differential Equations, 269( 3), 1904-1943. doi:10.1016/j.jde.2020.01.024
    • NLM

      Bortolan MC, Cardoso CAE das N, Carvalho AN de, Pires L. Lipschitz perturbations of Morse-Smale semigroups [Internet]. Journal of Differential Equations. 2020 ; 269( 3): 1904-1943.[citado 2022 jul. 06 ] Available from: https://doi.org/10.1016/j.jde.2020.01.024
    • Vancouver

      Bortolan MC, Cardoso CAE das N, Carvalho AN de, Pires L. Lipschitz perturbations of Morse-Smale semigroups [Internet]. Journal of Differential Equations. 2020 ; 269( 3): 1904-1943.[citado 2022 jul. 06 ] Available from: https://doi.org/10.1016/j.jde.2020.01.024
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: TEORIA DAS SINGULARIDADES, SIMETRIA, INVARIANTES

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BAPTISTELLI, Patrícia Hernandes e LABOURIAU, Isabel Salgado e MANOEL, Miriam Garcia. Recognition of symmetries in reversible maps. Journal of Mathematical Analysis and Applications, v. No 2020, n. 2, p. 1-15, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2020.124348. Acesso em: 06 jul. 2022.
    • APA

      Baptistelli, P. H., Labouriau, I. S., & Manoel, M. G. (2020). Recognition of symmetries in reversible maps. Journal of Mathematical Analysis and Applications, No 2020( 2), 1-15. doi:10.1016/j.jmaa.2020.124348
    • NLM

      Baptistelli PH, Labouriau IS, Manoel MG. Recognition of symmetries in reversible maps [Internet]. Journal of Mathematical Analysis and Applications. 2020 ; No 2020( 2): 1-15.[citado 2022 jul. 06 ] Available from: https://doi.org/10.1016/j.jmaa.2020.124348
    • Vancouver

      Baptistelli PH, Labouriau IS, Manoel MG. Recognition of symmetries in reversible maps [Internet]. Journal of Mathematical Analysis and Applications. 2020 ; No 2020( 2): 1-15.[citado 2022 jul. 06 ] Available from: https://doi.org/10.1016/j.jmaa.2020.124348
  • Unidade: ICMC

    Subjects: CURVAS ALGÉBRICAS, INVARIANTES, SISTEMAS DIFERENCIAIS

    Online source accessHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LIMA, Camila Aparecida Benedito Rodrigues de. Invariant curves on differential systems defined in Rn, n ≥ 2. 2019. Tese (Doutorado) – Universidade de São Paulo, São Carlos, 2019. Disponível em: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-27032019-105434/. Acesso em: 06 jul. 2022.
    • APA

      Lima, C. A. B. R. de. (2019). Invariant curves on differential systems defined in Rn, n ≥ 2 (Tese (Doutorado). Universidade de São Paulo, São Carlos. Recuperado de http://www.teses.usp.br/teses/disponiveis/55/55135/tde-27032019-105434/
    • NLM

      Lima CABR de. Invariant curves on differential systems defined in Rn, n ≥ 2 [Internet]. 2019 ;[citado 2022 jul. 06 ] Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-27032019-105434/
    • Vancouver

      Lima CABR de. Invariant curves on differential systems defined in Rn, n ≥ 2 [Internet]. 2019 ;[citado 2022 jul. 06 ] Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-27032019-105434/
  • Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, INVARIANTES

    Versão PublicadaOnline source accessHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Regilene Delazari dos Santos e VALLS, Claudia. Global dynamics of the May-Leonard system with a Darboux invariant. . São Carlos: ICMC-USP. Disponível em: http://repositorio.icmc.usp.br//handle/RIICMC/6875. Acesso em: 06 jul. 2022. , 2019
    • APA

      Oliveira, R. D. dos S., & Valls, C. (2019). Global dynamics of the May-Leonard system with a Darboux invariant. São Carlos: ICMC-USP. Recuperado de http://repositorio.icmc.usp.br//handle/RIICMC/6875
    • NLM

      Oliveira RD dos S, Valls C. Global dynamics of the May-Leonard system with a Darboux invariant [Internet]. 2019 ;[citado 2022 jul. 06 ] Available from: http://repositorio.icmc.usp.br//handle/RIICMC/6875
    • Vancouver

      Oliveira RD dos S, Valls C. Global dynamics of the May-Leonard system with a Darboux invariant [Internet]. 2019 ;[citado 2022 jul. 06 ] Available from: http://repositorio.icmc.usp.br//handle/RIICMC/6875

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2022