Filtros : "GRUPOS TOPOLÓGICOS" Limpar

Filtros



Refine with date range

Vocabulário Controlado do SIBiUSP


  • Source: Topology and its Applications. Unidade: IME

    Subjects: GRUPOS TOPOLÓGICOS, TEORIA DOS GRUPOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELLINI, Matheus Koveroff; RODRIGUES, Vinicius de Oliveira; TOMITA, Artur Hideyuki. On countably compact group topologies without non-trivial convergent sequences on Q(κ) for arbitrarily large κ and a selective ultrafilter. Topology and its Applications, Amsterdam, Elsevier, v. 294, p. 1-22, 2021. Disponível em: < https://doi.org/10.1016/j.topol.2021.107653 > DOI: 10.1016/j.topol.2021.107653.
    • APA

      Bellini, M. K., Rodrigues, V. de O., & Tomita, A. H. (2021). On countably compact group topologies without non-trivial convergent sequences on Q(κ) for arbitrarily large κ and a selective ultrafilter. Topology and its Applications, 294, 1-22. doi:10.1016/j.topol.2021.107653
    • NLM

      Bellini MK, Rodrigues V de O, Tomita AH. On countably compact group topologies without non-trivial convergent sequences on Q(κ) for arbitrarily large κ and a selective ultrafilter [Internet]. Topology and its Applications. 2021 ; 294 1-22.Available from: https://doi.org/10.1016/j.topol.2021.107653
    • Vancouver

      Bellini MK, Rodrigues V de O, Tomita AH. On countably compact group topologies without non-trivial convergent sequences on Q(κ) for arbitrarily large κ and a selective ultrafilter [Internet]. Topology and its Applications. 2021 ; 294 1-22.Available from: https://doi.org/10.1016/j.topol.2021.107653
  • Source: Topology and its Applications. Unidade: IME

    Subjects: GRUPOS TOPOLÓGICOS, TOPOLOGIA, ESPAÇOS TOPOLÓGICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GARCIA-FERREIRA, S.; TOMITA, Artur Hideyuki. Selectively pseudocompact groups and p-compactness. Topology and its Applications, Amsterdam, v. 285, n. art. 107380, p. 1-7, 2020. Disponível em: < https://doi.org/10.1016/j.topol.2020.107380 > DOI: 10.1016/j.topol.2020.107380.
    • APA

      Garcia-Ferreira, S., & Tomita, A. H. (2020). Selectively pseudocompact groups and p-compactness. Topology and its Applications, 285( art. 107380), 1-7. doi:10.1016/j.topol.2020.107380
    • NLM

      Garcia-Ferreira S, Tomita AH. Selectively pseudocompact groups and p-compactness [Internet]. Topology and its Applications. 2020 ; 285( art. 107380): 1-7.Available from: https://doi.org/10.1016/j.topol.2020.107380
    • Vancouver

      Garcia-Ferreira S, Tomita AH. Selectively pseudocompact groups and p-compactness [Internet]. Topology and its Applications. 2020 ; 285( art. 107380): 1-7.Available from: https://doi.org/10.1016/j.topol.2020.107380
  • Source: Topology and its Applications. Unidade: IME

    Assunto: GRUPOS TOPOLÓGICOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TOMITA, Artur Hideyuki. A van Douwen-like ZFC theorem for small powers of countably compact groups without non-trivial convergent sequences. Topology and its Applications, Amsterdam, v. 259, p. 347-364, 2019. Disponível em: < http://dx.doi.org/10.1016/j.topol.2019.02.040 > DOI: 10.1016/j.topol.2019.02.040.
    • APA

      Tomita, A. H. (2019). A van Douwen-like ZFC theorem for small powers of countably compact groups without non-trivial convergent sequences. Topology and its Applications, 259, 347-364. doi:10.1016/j.topol.2019.02.040
    • NLM

      Tomita AH. A van Douwen-like ZFC theorem for small powers of countably compact groups without non-trivial convergent sequences [Internet]. Topology and its Applications. 2019 ; 259 347-364.Available from: http://dx.doi.org/10.1016/j.topol.2019.02.040
    • Vancouver

      Tomita AH. A van Douwen-like ZFC theorem for small powers of countably compact groups without non-trivial convergent sequences [Internet]. Topology and its Applications. 2019 ; 259 347-364.Available from: http://dx.doi.org/10.1016/j.topol.2019.02.040
  • Unidade: IME

    Subjects: TEORIA DESCRITIVA DOS CONJUNTOS, ANÁLISE FUNCIONAL, ESPAÇOS UNIFORMES, ESPAÇOS DE BANACH, GRUPOS TOPOLÓGICOS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GARCIA, Denis de Assis Pinto; FERENCZI, Valentin. Aplicações da teoria dos espaços coarse a espaços de Banach e grupos topológicos. 2019.Universidade de São Paulo, São Paulo, 2019. Disponível em: < http://www.teses.usp.br/teses/disponiveis/45/45131/tde-05082019-213214/ >.
    • APA

      Garcia, D. de A. P., & Ferenczi, V. (2019). Aplicações da teoria dos espaços coarse a espaços de Banach e grupos topológicos. Universidade de São Paulo, São Paulo. Recuperado de http://www.teses.usp.br/teses/disponiveis/45/45131/tde-05082019-213214/
    • NLM

      Garcia D de AP, Ferenczi V. Aplicações da teoria dos espaços coarse a espaços de Banach e grupos topológicos [Internet]. 2019 ;Available from: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-05082019-213214/
    • Vancouver

      Garcia D de AP, Ferenczi V. Aplicações da teoria dos espaços coarse a espaços de Banach e grupos topológicos [Internet]. 2019 ;Available from: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-05082019-213214/
  • Source: Transactions of the American Mathematical Society. Unidade: IME

    Subjects: GRUPOIDES, GEOMETRIA SIMPLÉTICA, GRUPOS TOPOLÓGICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRAHIC, Olivier; ORTIZ, Cristian. Integration of 2-term representations up to homotopy via 2-functors. Transactions of the American Mathematical Society, Boston, v. 372, n. 1, p. 503-543, 2019. Disponível em: < http://dx.doi.org/10.1090/tran/7586 > DOI: 10.1090/tran/7586.
    • APA

      Brahic, O., & Ortiz, C. (2019). Integration of 2-term representations up to homotopy via 2-functors. Transactions of the American Mathematical Society, 372( 1), 503-543. doi:10.1090/tran/7586
    • NLM

      Brahic O, Ortiz C. Integration of 2-term representations up to homotopy via 2-functors [Internet]. Transactions of the American Mathematical Society. 2019 ; 372( 1): 503-543.Available from: http://dx.doi.org/10.1090/tran/7586
    • Vancouver

      Brahic O, Ortiz C. Integration of 2-term representations up to homotopy via 2-functors [Internet]. Transactions of the American Mathematical Society. 2019 ; 372( 1): 503-543.Available from: http://dx.doi.org/10.1090/tran/7586
  • Source: Fundamenta Mathematicae. Unidade: IME

    Assunto: GRUPOS TOPOLÓGICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LEIDERMAN, Arkady G; TOMITA, Artur Hideyuki; PESTOV, Vladimir G. On topological groups admitting a base at the identity indexed by ωω. Fundamenta Mathematicae, Warsaw, v. 238, p. 79-100, 2017. Disponível em: < https://dx.doi.org/10.4064/fm188-9-2016 > DOI: 10.4064/fm188-9-2016.
    • APA

      Leiderman, A. G., Tomita, A. H., & Pestov, V. G. (2017). On topological groups admitting a base at the identity indexed by ωω. Fundamenta Mathematicae, 238, 79-100. doi:10.4064/fm188-9-2016
    • NLM

      Leiderman AG, Tomita AH, Pestov VG. On topological groups admitting a base at the identity indexed by ωω [Internet]. Fundamenta Mathematicae. 2017 ; 238 79-100.Available from: https://dx.doi.org/10.4064/fm188-9-2016
    • Vancouver

      Leiderman AG, Tomita AH, Pestov VG. On topological groups admitting a base at the identity indexed by ωω [Internet]. Fundamenta Mathematicae. 2017 ; 238 79-100.Available from: https://dx.doi.org/10.4064/fm188-9-2016
  • Source: Topology and its Applications. Conference titles: Brazilian Conference on General Topology and Set Theory - STW. Unidade: IME

    Subjects: GRUPOS TOPOLÓGICOS, TOPOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BOERO, Ana Carolina; TOMITA, Artur Hideyuki; PEREIRA, Irene Castro. A group topology on the real line that makes its square countably compact but not its cube. Topology and its Applications[S.l: s.n.], 2015.Disponível em: DOI: 10.1016/j.topol.2015.05.070.
    • APA

      Boero, A. C., Tomita, A. H., & Pereira, I. C. (2015). A group topology on the real line that makes its square countably compact but not its cube. Topology and its Applications. Amsterdam. doi:10.1016/j.topol.2015.05.070
    • NLM

      Boero AC, Tomita AH, Pereira IC. A group topology on the real line that makes its square countably compact but not its cube [Internet]. Topology and its Applications. 2015 ; 192 30-57.Available from: http://dx.doi.org/10.1016/j.topol.2015.05.070
    • Vancouver

      Boero AC, Tomita AH, Pereira IC. A group topology on the real line that makes its square countably compact but not its cube [Internet]. Topology and its Applications. 2015 ; 192 30-57.Available from: http://dx.doi.org/10.1016/j.topol.2015.05.070
  • Source: Topology and its Applications. Conference titles: Brazilian Conference on General Topology and Set Theory - STW. Unidade: IME

    Subjects: GRUPOS TOPOLÓGICOS, TOPOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GARCIA-FERREIRA, Salvador; TOMITA, Artur Hideyuki. A pseudocompact group which is not strongly pseudocompact. Topology and its Applications[S.l: s.n.], 2015.Disponível em: DOI: 10.1016/j.topol.2015.05.076.
    • APA

      Garcia-Ferreira, S., & Tomita, A. H. (2015). A pseudocompact group which is not strongly pseudocompact. Topology and its Applications. Amsterdam. doi:10.1016/j.topol.2015.05.076
    • NLM

      Garcia-Ferreira S, Tomita AH. A pseudocompact group which is not strongly pseudocompact [Internet]. Topology and its Applications. 2015 ; 192 138–144.Available from: http://dx.doi.org/10.1016/j.topol.2015.05.076
    • Vancouver

      Garcia-Ferreira S, Tomita AH. A pseudocompact group which is not strongly pseudocompact [Internet]. Topology and its Applications. 2015 ; 192 138–144.Available from: http://dx.doi.org/10.1016/j.topol.2015.05.076
  • Source: Topology and its Applications. Conference titles: Brazilian Conference on General Topology and Set Theory - STW. Unidade: IME

    Subjects: GRUPOS TOPOLÓGICOS, TOPOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TKACHENKO, Mikhail G; TOMITA, Artur Hideyuki. Cellularity in subgroups of paratopological groups. Topology and its Applications[S.l: s.n.], 2015.Disponível em: DOI: 10.1016/j.topol.2015.05.081.
    • APA

      Tkachenko, M. G., & Tomita, A. H. (2015). Cellularity in subgroups of paratopological groups. Topology and its Applications. Amsterdam. doi:10.1016/j.topol.2015.05.081
    • NLM

      Tkachenko MG, Tomita AH. Cellularity in subgroups of paratopological groups [Internet]. Topology and its Applications. 2015 ; 192 188–197.Available from: http://dx.doi.org/10.1016/j.topol.2015.05.081
    • Vancouver

      Tkachenko MG, Tomita AH. Cellularity in subgroups of paratopological groups [Internet]. Topology and its Applications. 2015 ; 192 188–197.Available from: http://dx.doi.org/10.1016/j.topol.2015.05.081
  • Source: Topology and its Applications. Unidade: IME

    Subjects: TOPOLOGIA, GRUPOS TOPOLÓGICOS, GRUPOS ABELIANOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TOMITA, Artur Hideyuki. A group topology on the free Abelian group of cardinality c that makes its finite powers countably compact. Topology and its Applications, Amsterdam, 2015. Disponível em: < http://dx.doi.org/10.1016/j.topol.2015.05.060 > DOI: 10.1016/j.topol.2015.05.060.
    • APA

      Tomita, A. H. (2015). A group topology on the free Abelian group of cardinality c that makes its finite powers countably compact. Topology and its Applications. doi:10.1016/j.topol.2015.05.060
    • NLM

      Tomita AH. A group topology on the free Abelian group of cardinality c that makes its finite powers countably compact [Internet]. Topology and its Applications. 2015 ;Available from: http://dx.doi.org/10.1016/j.topol.2015.05.060
    • Vancouver

      Tomita AH. A group topology on the free Abelian group of cardinality c that makes its finite powers countably compact [Internet]. Topology and its Applications. 2015 ;Available from: http://dx.doi.org/10.1016/j.topol.2015.05.060
  • Source: Journal of Dynamical and Control Systems. Unidade: ICMC

    Subjects: TEORIA GEOMÉTRICA DOS GRUPOS, GRUPOS TOPOLÓGICOS, GRUPOS DE LIE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VIEIRA, M. G. O; KIZIL, Eyup; CATUOGNO, P. J. Regular trajectories of young systems. Journal of Dynamical and Control Systems, New York, v. 21, n. 4, p. 539-558, 2015. Disponível em: < http://dx.doi.org/10.1007/s10883-015-9279-2 > DOI: 10.1007/s10883-015-9279-2.
    • APA

      Vieira, M. G. O., Kizil, E., & Catuogno, P. J. (2015). Regular trajectories of young systems. Journal of Dynamical and Control Systems, 21( 4), 539-558. doi:10.1007/s10883-015-9279-2
    • NLM

      Vieira MGO, Kizil E, Catuogno PJ. Regular trajectories of young systems [Internet]. Journal of Dynamical and Control Systems. 2015 ; 21( 4): 539-558.Available from: http://dx.doi.org/10.1007/s10883-015-9279-2
    • Vancouver

      Vieira MGO, Kizil E, Catuogno PJ. Regular trajectories of young systems [Internet]. Journal of Dynamical and Control Systems. 2015 ; 21( 4): 539-558.Available from: http://dx.doi.org/10.1007/s10883-015-9279-2
  • Source: Journal of Lie Theory. Unidade: ICMC

    Subjects: TEORIA GEOMÉTRICA DOS GRUPOS, GRUPOS TOPOLÓGICOS, GRUPOS DE LIE

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KIZIL, Eyup; LAWSON, Jimmie. Lie semigroups, homotopy, and global extensions of local homomorphisms. Journal of Lie Theory, Lemgo, v. 25, n. 3, p. 753-774, 2015.
    • APA

      Kizil, E., & Lawson, J. (2015). Lie semigroups, homotopy, and global extensions of local homomorphisms. Journal of Lie Theory, 25( 3), 753-774.
    • NLM

      Kizil E, Lawson J. Lie semigroups, homotopy, and global extensions of local homomorphisms. Journal of Lie Theory. 2015 ; 25( 3): 753-774.
    • Vancouver

      Kizil E, Lawson J. Lie semigroups, homotopy, and global extensions of local homomorphisms. Journal of Lie Theory. 2015 ; 25( 3): 753-774.
  • Source: Central European Journal of Mathematics. Unidade: IME

    Subjects: TOPOLOGIA ALGÉBRICA, GRUPOS TOPOLÓGICOS, TEORIA DOS NÚMEROS, GRUPOS DE LIE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALAS, Ofélia Teresa; TKACHUK, Vladimir V; WILSON, Richard Gordon. Maximal pseudocompact spaces and the Preiss-Simon property. Central European Journal of Mathematics, Warsaw, v. 12, n. 3, p. 500-509, 2014. Disponível em: < http://dx.doi.org/10.2478/s11533-013-0359-9 > DOI: 10.2478/s11533-013-0359-9.
    • APA

      Alas, O. T., Tkachuk, V. V., & Wilson, R. G. (2014). Maximal pseudocompact spaces and the Preiss-Simon property. Central European Journal of Mathematics, 12( 3), 500-509. doi:10.2478/s11533-013-0359-9
    • NLM

      Alas OT, Tkachuk VV, Wilson RG. Maximal pseudocompact spaces and the Preiss-Simon property [Internet]. Central European Journal of Mathematics. 2014 ; 12( 3): 500-509.Available from: http://dx.doi.org/10.2478/s11533-013-0359-9
    • Vancouver

      Alas OT, Tkachuk VV, Wilson RG. Maximal pseudocompact spaces and the Preiss-Simon property [Internet]. Central European Journal of Mathematics. 2014 ; 12( 3): 500-509.Available from: http://dx.doi.org/10.2478/s11533-013-0359-9
  • Source: Houston Journal of Mathematics. Unidade: IME

    Subjects: GRUPOS TOPOLÓGICOS, TEORIA DOS CONJUNTOS, INDEPENDÊNCIA E CONSISTÊNCIA

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SZEPTYCKI, Paul J; TOMITA, Artur Hideyuki. Countable compactness of powers of HFD groups. Houston Journal of Mathematics, Houston, v. 40, n. 3, p. 899-916, 2014.
    • APA

      Szeptycki, P. J., & Tomita, A. H. (2014). Countable compactness of powers of HFD groups. Houston Journal of Mathematics, 40( 3), 899-916.
    • NLM

      Szeptycki PJ, Tomita AH. Countable compactness of powers of HFD groups. Houston Journal of Mathematics. 2014 ; 40( 3): 899-916.
    • Vancouver

      Szeptycki PJ, Tomita AH. Countable compactness of powers of HFD groups. Houston Journal of Mathematics. 2014 ; 40( 3): 899-916.
  • Source: Transformation Groups. Unidade: IME

    Subjects: GRUPOS DE LIE, PSEUDOGRUPOS, ANÁLISE GLOBAL, GRUPOS TOPOLÓGICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BETTIOL, Renato Ghini; PICCIONE, Paolo; SICILIANO, Gaetano. Deforming solutions of geometric variational problems with varying symmetry groups. Transformation Groups, New York, v. 19, n. 4, p. 941-968, 2014. Disponível em: < http://dx.doi.org/10.1007/s00031-014-9277-6 > DOI: 10.1007/s00031-014-9277-6.
    • APA

      Bettiol, R. G., Piccione, P., & Siciliano, G. (2014). Deforming solutions of geometric variational problems with varying symmetry groups. Transformation Groups, 19( 4), 941-968. doi:10.1007/s00031-014-9277-6
    • NLM

      Bettiol RG, Piccione P, Siciliano G. Deforming solutions of geometric variational problems with varying symmetry groups [Internet]. Transformation Groups. 2014 ; 19( 4): 941-968.Available from: http://dx.doi.org/10.1007/s00031-014-9277-6
    • Vancouver

      Bettiol RG, Piccione P, Siciliano G. Deforming solutions of geometric variational problems with varying symmetry groups [Internet]. Transformation Groups. 2014 ; 19( 4): 941-968.Available from: http://dx.doi.org/10.1007/s00031-014-9277-6
  • Unidade: ICMC

    Subjects: GEOMETRIA SIMPLÉTICA, GEOMETRIA DIFERENCIAL, GRUPOS TOPOLÓGICOS, GRUPOS DE LIE, FÍSICA MODERNA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RIOS, Pedro Paulo de Magalhães; STRAUME, Eldar. Symbol correspondences for spin systems. [S.l: s.n.], 2014.Disponível em: DOI: 10.1007/978-3-319-08198-4.
    • APA

      Rios, P. P. de M., & Straume, E. (2014). Symbol correspondences for spin systems. Cham: Birkhäuser. doi:10.1007/978-3-319-08198-4
    • NLM

      Rios PP de M, Straume E. Symbol correspondences for spin systems [Internet]. 2014 ;Available from: http://dx.doi.org/10.1007/978-3-319-08198-4
    • Vancouver

      Rios PP de M, Straume E. Symbol correspondences for spin systems [Internet]. 2014 ;Available from: http://dx.doi.org/10.1007/978-3-319-08198-4
  • Unidade: ICMC

    Subjects: TEORIA DOS GRUPOS, GRUPOS DE WHITEHEAD, GRUPOS TOPOLÓGICOS, VARIEDADES RIEMANNIANAS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GALVES, Ana Paula Tremura; MANZOLI NETO, Oziride; SPREAFICO, Mauro Flávio. Decomposição celular e torção de Reidemeister para formas espaciais esféricas tetraedrais. 2013.Universidade de São Paulo, São Carlos, 2013. Disponível em: < http://www.teses.usp.br/teses/disponiveis/55/55135/tde-01042013-102842/ >.
    • APA

      Galves, A. P. T., Manzoli Neto, O., & Spreafico, M. F. (2013). Decomposição celular e torção de Reidemeister para formas espaciais esféricas tetraedrais. Universidade de São Paulo, São Carlos. Recuperado de http://www.teses.usp.br/teses/disponiveis/55/55135/tde-01042013-102842/
    • NLM

      Galves APT, Manzoli Neto O, Spreafico MF. Decomposição celular e torção de Reidemeister para formas espaciais esféricas tetraedrais [Internet]. 2013 ;Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-01042013-102842/
    • Vancouver

      Galves APT, Manzoli Neto O, Spreafico MF. Decomposição celular e torção de Reidemeister para formas espaciais esféricas tetraedrais [Internet]. 2013 ;Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-01042013-102842/
  • Source: Houston Journal of Marthematics. Unidade: IME

    Assunto: GRUPOS TOPOLÓGICOS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BOERO, Ana Carolina; TOMITA, Artur Hideyuki. A countably compact group topology on abelian almost torsion-free groups from selective ultrafilters. Houston Journal of Marthematics, Houston, v. 39, n. 1, p. 317-342, 2013. Disponível em: < http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.434.294&rep=rep1&type=pdf >.
    • APA

      Boero, A. C., & Tomita, A. H. (2013). A countably compact group topology on abelian almost torsion-free groups from selective ultrafilters. Houston Journal of Marthematics, 39( 1), 317-342. Recuperado de http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.434.294&rep=rep1&type=pdf
    • NLM

      Boero AC, Tomita AH. A countably compact group topology on abelian almost torsion-free groups from selective ultrafilters [Internet]. Houston Journal of Marthematics. 2013 ; 39( 1): 317-342.Available from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.434.294&rep=rep1&type=pdf
    • Vancouver

      Boero AC, Tomita AH. A countably compact group topology on abelian almost torsion-free groups from selective ultrafilters [Internet]. Houston Journal of Marthematics. 2013 ; 39( 1): 317-342.Available from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.434.294&rep=rep1&type=pdf
  • Source: Canadian Mathematical Bulletin. Unidade: IME

    Assunto: GRUPOS TOPOLÓGICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TAUSK, Daniel Victor. A locally compact non divisible abelian group whose character group is torsion free and divisible. Canadian Mathematical Bulletin, Ottawa, v. 56, n. 1, p. 213-217, 2013. Disponível em: < http://dx.doi.org/10.4153/CMB-2011-146-4 > DOI: 10.4153/CMB-2011-146-4.
    • APA

      Tausk, D. V. (2013). A locally compact non divisible abelian group whose character group is torsion free and divisible. Canadian Mathematical Bulletin, 56( 1), 213-217. doi:10.4153/CMB-2011-146-4
    • NLM

      Tausk DV. A locally compact non divisible abelian group whose character group is torsion free and divisible [Internet]. Canadian Mathematical Bulletin. 2013 ; 56( 1): 213-217.Available from: http://dx.doi.org/10.4153/CMB-2011-146-4
    • Vancouver

      Tausk DV. A locally compact non divisible abelian group whose character group is torsion free and divisible [Internet]. Canadian Mathematical Bulletin. 2013 ; 56( 1): 213-217.Available from: http://dx.doi.org/10.4153/CMB-2011-146-4
  • Source: Fundamenta Mathematicae. Unidade: IME

    Assunto: GRUPOS TOPOLÓGICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BOERO, Ana Carolina; TOMITA, Artur Hideyuki. A group topology on the free abelian group of cardinality. Fundamenta Mathematicae, Warsaw, v. 212, n. 3, p. 235-260, 2011. Disponível em: < http://dx.doi.org/10.4064/fm212-3-3 > DOI: 10.4064/fm212-3-3.
    • APA

      Boero, A. C., & Tomita, A. H. (2011). A group topology on the free abelian group of cardinality. Fundamenta Mathematicae, 212( 3), 235-260. doi:10.4064/fm212-3-3
    • NLM

      Boero AC, Tomita AH. A group topology on the free abelian group of cardinality [Internet]. Fundamenta Mathematicae. 2011 ; 212( 3): 235-260.Available from: http://dx.doi.org/10.4064/fm212-3-3
    • Vancouver

      Boero AC, Tomita AH. A group topology on the free abelian group of cardinality [Internet]. Fundamenta Mathematicae. 2011 ; 212( 3): 235-260.Available from: http://dx.doi.org/10.4064/fm212-3-3

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2021