Filtros : "ANÉIS E ÁLGEBRAS ASSOCIATIVOS" Limpar

Filtros



Refine with date range

Vocabulário Controlado do SIBiUSP


  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ÁLGEBRA LINEAR, ÁLGEBRA MULTILINEAR, ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    Disponível em 2022-10-28Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONDARENKO, Vitalij M.; FUTORNY, Vyacheslav; PETRAVCHUK, Anatolii P.; SERGEICHUK, Vladimir V. Pairs of commuting nilpotent operators with one-dimensional intersection of kernels and matrices commuting with a Weyr matrix. Linear Algebra and its Applications, New York, v. 612, p. 188-205, 2021. Disponível em: < https://doi.org/10.1016/j.laa.2020.10.040 > DOI: 10.1016/j.laa.2020.10.040.
    • APA

      Bondarenko, V. M., Futorny, V., Petravchuk, A. P., & Sergeichuk, V. V. (2021). Pairs of commuting nilpotent operators with one-dimensional intersection of kernels and matrices commuting with a Weyr matrix. Linear Algebra and its Applications, 612, 188-205. doi:10.1016/j.laa.2020.10.040
    • NLM

      Bondarenko VM, Futorny V, Petravchuk AP, Sergeichuk VV. Pairs of commuting nilpotent operators with one-dimensional intersection of kernels and matrices commuting with a Weyr matrix [Internet]. Linear Algebra and its Applications. 2021 ; 612 188-205.Available from: https://doi.org/10.1016/j.laa.2020.10.040
    • Vancouver

      Bondarenko VM, Futorny V, Petravchuk AP, Sergeichuk VV. Pairs of commuting nilpotent operators with one-dimensional intersection of kernels and matrices commuting with a Weyr matrix [Internet]. Linear Algebra and its Applications. 2021 ; 612 188-205.Available from: https://doi.org/10.1016/j.laa.2020.10.040
  • Source: Journal of Algebra. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MARCOS, Eduardo do Nascimento; VOLKOV, Y. Homogeneous algebras via homogeneous triples. Journal of Algebra, New York, v. 566, p. 259-282, 2021. Disponível em: < https://doi.org/10.1016/j.jalgebra.2020.09.012 > DOI: 10.1016/j.jalgebra.2020.09.012.
    • APA

      Marcos, E. do N., & Volkov, Y. (2021). Homogeneous algebras via homogeneous triples. Journal of Algebra, 566, 259-282. doi:10.1016/j.jalgebra.2020.09.012
    • NLM

      Marcos E do N, Volkov Y. Homogeneous algebras via homogeneous triples [Internet]. Journal of Algebra. 2021 ; 566 259-282.Available from: https://doi.org/10.1016/j.jalgebra.2020.09.012
    • Vancouver

      Marcos E do N, Volkov Y. Homogeneous algebras via homogeneous triples [Internet]. Journal of Algebra. 2021 ; 566 259-282.Available from: https://doi.org/10.1016/j.jalgebra.2020.09.012
  • Source: Canadian Journal of Mathematics. Unidade: IME

    Subjects: ANÉIS COM DIVISÃO, ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SÁNCHEZ, Javier. Free group algebras in division rings with valuation II. Canadian Journal of Mathematics, Cambridge, v. 72, n. 6, p. 1463-1504, 2020. Disponível em: < https://doi.org/10.4153/S0008414X19000348 > DOI: 10.4153/S0008414X19000348.
    • APA

      Sánchez, J. (2020). Free group algebras in division rings with valuation II. Canadian Journal of Mathematics, 72( 6), 1463-1504. doi:10.4153/S0008414X19000348
    • NLM

      Sánchez J. Free group algebras in division rings with valuation II [Internet]. Canadian Journal of Mathematics. 2020 ; 72( 6): 1463-1504.Available from: https://doi.org/10.4153/S0008414X19000348
    • Vancouver

      Sánchez J. Free group algebras in division rings with valuation II [Internet]. Canadian Journal of Mathematics. 2020 ; 72( 6): 1463-1504.Available from: https://doi.org/10.4153/S0008414X19000348
  • Source: Forum Mathematicum. Unidade: IME

    Subjects: COHOMOLOGIA DE GRUPOS, ANÉIS DE GRUPOS, ANÉIS E ÁLGEBRAS ASSOCIATIVOS, TEORIA DOS GRUPOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DOKUCHAEV, Michael; KHRYPCHENKO, Mykola; MAKUTA, Mayumi. The third partial cohomology group and existence of extensions of semilattices of groups by groups. Forum Mathematicum, Berlin, v. 32, n. 5, p. 1297-1313, 2020. Disponível em: < https://doi.org/10.1515/forum-2019-0281 > DOI: 10.1515/forum-2019-0281.
    • APA

      Dokuchaev, M., Khrypchenko, M., & Makuta, M. (2020). The third partial cohomology group and existence of extensions of semilattices of groups by groups. Forum Mathematicum, 32( 5), 1297-1313. doi:10.1515/forum-2019-0281
    • NLM

      Dokuchaev M, Khrypchenko M, Makuta M. The third partial cohomology group and existence of extensions of semilattices of groups by groups [Internet]. Forum Mathematicum. 2020 ; 32( 5): 1297-1313.Available from: https://doi.org/10.1515/forum-2019-0281
    • Vancouver

      Dokuchaev M, Khrypchenko M, Makuta M. The third partial cohomology group and existence of extensions of semilattices of groups by groups [Internet]. Forum Mathematicum. 2020 ; 32( 5): 1297-1313.Available from: https://doi.org/10.1515/forum-2019-0281
  • Source: Journal of Algebra. Unidade: IME

    Subjects: COHOMOLOGIA DE GRUPOS, ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ÁLGEBRA HOMOLÓGICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DOKUCHAEV, Michael; KHRYPCHENKO, Mykola; SIMÓN, Juan Jacobo. Globalization of group cohomology in the sense of Alvares-Alves-Redondo. Journal of Algebra, New York, v. 546, p. 604-640, 2020. Disponível em: < http://dx.doi.org/10.1016/j.jalgebra.2019.11.009 > DOI: 10.1016/j.jalgebra.2019.11.009.
    • APA

      Dokuchaev, M., Khrypchenko, M., & Simón, J. J. (2020). Globalization of group cohomology in the sense of Alvares-Alves-Redondo. Journal of Algebra, 546, 604-640. doi:10.1016/j.jalgebra.2019.11.009
    • NLM

      Dokuchaev M, Khrypchenko M, Simón JJ. Globalization of group cohomology in the sense of Alvares-Alves-Redondo [Internet]. Journal of Algebra. 2020 ; 546 604-640.Available from: http://dx.doi.org/10.1016/j.jalgebra.2019.11.009
    • Vancouver

      Dokuchaev M, Khrypchenko M, Simón JJ. Globalization of group cohomology in the sense of Alvares-Alves-Redondo [Internet]. Journal of Algebra. 2020 ; 546 604-640.Available from: http://dx.doi.org/10.1016/j.jalgebra.2019.11.009
  • Source: Transactions of the American Mathematical Society. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIAMBRUNO, Antonio; LA MATTINA, Daniela; POLCINO MILIES, Francisco César. Star-fundamental algebras: polynomial identities and asymptotics. Transactions of the American Mathematical Society, Providence, 2020. Disponível em: < https://doi.org/10.1090/tran/8182 > DOI: 10.1090/tran/8182.
    • APA

      Giambruno, A., La Mattina, D., & Polcino Milies, F. C. (2020). Star-fundamental algebras: polynomial identities and asymptotics. Transactions of the American Mathematical Society. doi:10.1090/tran/8182
    • NLM

      Giambruno A, La Mattina D, Polcino Milies FC. Star-fundamental algebras: polynomial identities and asymptotics [Internet]. Transactions of the American Mathematical Society. 2020 ;Available from: https://doi.org/10.1090/tran/8182
    • Vancouver

      Giambruno A, La Mattina D, Polcino Milies FC. Star-fundamental algebras: polynomial identities and asymptotics [Internet]. Transactions of the American Mathematical Society. 2020 ;Available from: https://doi.org/10.1090/tran/8182
  • Source: Communications in Algebra. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ÁLGEBRAS DE LIE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CRODE, Sidney Dale; SHESTAKOV, Ivan P. Locally nilpotent derivations and automorphisms of free associative algebra with two generators. Communications in Algebra, New York, v. 48, n. 7, p. 3091-3098, 2020. Disponível em: < https://doi.org/10.1080/00927872.2020.1729363 > DOI: 10.1080/00927872.2020.1729363.
    • APA

      Crode, S. D., & Shestakov, I. P. (2020). Locally nilpotent derivations and automorphisms of free associative algebra with two generators. Communications in Algebra, 48( 7), 3091-3098. doi:10.1080/00927872.2020.1729363
    • NLM

      Crode SD, Shestakov IP. Locally nilpotent derivations and automorphisms of free associative algebra with two generators [Internet]. Communications in Algebra. 2020 ; 48( 7): 3091-3098.Available from: https://doi.org/10.1080/00927872.2020.1729363
    • Vancouver

      Crode SD, Shestakov IP. Locally nilpotent derivations and automorphisms of free associative algebra with two generators [Internet]. Communications in Algebra. 2020 ; 48( 7): 3091-3098.Available from: https://doi.org/10.1080/00927872.2020.1729363
  • Source: Linear and Multilinear Algebra. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    Disponível em 2021-06-11Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FONSECA, Lais S; SANTULO, Ednei A; YASUMURA, Felipe. Degree-inverting involution on full square and triangular matrices. Linear and Multilinear Algebra, Abingdon, 2020. Disponível em: < https://doi.org/10.1080/03081087.2020.1779643 > DOI: 10.1080/03081087.2020.1779643.
    • APA

      Fonseca, L. S., Santulo, E. A., & Yasumura, F. (2020). Degree-inverting involution on full square and triangular matrices. Linear and Multilinear Algebra. doi:10.1080/03081087.2020.1779643
    • NLM

      Fonseca LS, Santulo EA, Yasumura F. Degree-inverting involution on full square and triangular matrices [Internet]. Linear and Multilinear Algebra. 2020 ;Available from: https://doi.org/10.1080/03081087.2020.1779643
    • Vancouver

      Fonseca LS, Santulo EA, Yasumura F. Degree-inverting involution on full square and triangular matrices [Internet]. Linear and Multilinear Algebra. 2020 ;Available from: https://doi.org/10.1080/03081087.2020.1779643
  • Source: Journal of Algebra. Unidade: ICMC

    Subjects: ÁLGEBRAS DE HOPF, ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, ÁLGEBRAS LIVRES, ÁLGEBRAS DE LIE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MENCATTINI, Igor; QUESNEY, Alexandre Thomas Guillaume; SILVA, Pryscilla. Post-symmetric braces and integration of post-Lie algebras. Journal of Algebra, San Diego, v. 556, p. 547-580, 2020. Disponível em: < https://doi.org/10.1016/j.jalgebra.2020.03.018 > DOI: 10.1016/j.jalgebra.2020.03.018.
    • APA

      Mencattini, I., Quesney, A. T. G., & Silva, P. (2020). Post-symmetric braces and integration of post-Lie algebras. Journal of Algebra, 556, 547-580. doi:10.1016/j.jalgebra.2020.03.018
    • NLM

      Mencattini I, Quesney ATG, Silva P. Post-symmetric braces and integration of post-Lie algebras [Internet]. Journal of Algebra. 2020 ; 556 547-580.Available from: https://doi.org/10.1016/j.jalgebra.2020.03.018
    • Vancouver

      Mencattini I, Quesney ATG, Silva P. Post-symmetric braces and integration of post-Lie algebras [Internet]. Journal of Algebra. 2020 ; 556 547-580.Available from: https://doi.org/10.1016/j.jalgebra.2020.03.018
  • Source: Journal of Algebra. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav; GRANTCHAROV, Dimitar; RAMIREZ, Luis Enrique; ZADUNAISKY, Pablo. Bounds of Gelfand-Tsetlin multiplicities and tableaux realizations of Verma modules. Journal of Algebra, New York, v. 556, p. 412-436, 2020. Disponível em: < http://dx.doi.org/10.1016/j.jalgebra.2020.02.032 > DOI: 10.1016/j.jalgebra.2020.02.032.
    • APA

      Futorny, V., Grantcharov, D., Ramirez, L. E., & Zadunaisky, P. (2020). Bounds of Gelfand-Tsetlin multiplicities and tableaux realizations of Verma modules. Journal of Algebra, 556, 412-436. doi:10.1016/j.jalgebra.2020.02.032
    • NLM

      Futorny V, Grantcharov D, Ramirez LE, Zadunaisky P. Bounds of Gelfand-Tsetlin multiplicities and tableaux realizations of Verma modules [Internet]. Journal of Algebra. 2020 ; 556 412-436.Available from: http://dx.doi.org/10.1016/j.jalgebra.2020.02.032
    • Vancouver

      Futorny V, Grantcharov D, Ramirez LE, Zadunaisky P. Bounds of Gelfand-Tsetlin multiplicities and tableaux realizations of Verma modules [Internet]. Journal of Algebra. 2020 ; 556 412-436.Available from: http://dx.doi.org/10.1016/j.jalgebra.2020.02.032
  • Source: Proceedings of the American Mathematical Society. Unidade: IME

    Subjects: ÁLGEBRA HOMOLÓGICA, COHOMOLOGIA, ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CIBILS, Claude; LANZILOTTA, Marcelo; MARCOS, Eduardo do Nascimento; SOLOTAR, Andrea. Deleting or adding arrows of a bound quiver algebra and Hochschild (co)homology. Proceedings of the American Mathematical Society, Menasha, v. 148, n. 6, p. 2421-2432, 2020. Disponível em: < http://dx.doi.org/10.1090/proc/14936 > DOI: 10.1090/proc/14936.
    • APA

      Cibils, C., Lanzilotta, M., Marcos, E. do N., & Solotar, A. (2020). Deleting or adding arrows of a bound quiver algebra and Hochschild (co)homology. Proceedings of the American Mathematical Society, 148( 6), 2421-2432. doi:10.1090/proc/14936
    • NLM

      Cibils C, Lanzilotta M, Marcos E do N, Solotar A. Deleting or adding arrows of a bound quiver algebra and Hochschild (co)homology [Internet]. Proceedings of the American Mathematical Society. 2020 ; 148( 6): 2421-2432.Available from: http://dx.doi.org/10.1090/proc/14936
    • Vancouver

      Cibils C, Lanzilotta M, Marcos E do N, Solotar A. Deleting or adding arrows of a bound quiver algebra and Hochschild (co)homology [Internet]. Proceedings of the American Mathematical Society. 2020 ; 148( 6): 2421-2432.Available from: http://dx.doi.org/10.1090/proc/14936
  • Source: Pacific Journal of Mathematics. Unidade: IME

    Subjects: COHOMOLOGIA, ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ÁLGEBRA HOMOLÓGICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CIBILS, Claude; LANZILOTTA, Marcelo; MARCOS, Eduardo do Nascimento; SOLOTAR, Andrea. Split bounded extension algebras and Han’sconjecture. Pacific Journal of Mathematics, Carmel Valley, v. 307, n. 1, p. 63-77, 2020. Disponível em: < https://doi.org/10.2140/pjm.2020.307.63 > DOI: 10.2140/pjm.2020.307.63.
    • APA

      Cibils, C., Lanzilotta, M., Marcos, E. do N., & Solotar, A. (2020). Split bounded extension algebras and Han’sconjecture. Pacific Journal of Mathematics, 307( 1), 63-77. doi:10.2140/pjm.2020.307.63
    • NLM

      Cibils C, Lanzilotta M, Marcos E do N, Solotar A. Split bounded extension algebras and Han’sconjecture [Internet]. Pacific Journal of Mathematics. 2020 ; 307( 1): 63-77.Available from: https://doi.org/10.2140/pjm.2020.307.63
    • Vancouver

      Cibils C, Lanzilotta M, Marcos E do N, Solotar A. Split bounded extension algebras and Han’sconjecture [Internet]. Pacific Journal of Mathematics. 2020 ; 307( 1): 63-77.Available from: https://doi.org/10.2140/pjm.2020.307.63
  • Source: Proceedings of the American Mathematical Society. Unidade: IME

    Subjects: TEORIA DOS CAMPOS, ANÉIS E ÁLGEBRAS ASSOCIATIVOS, TEORIA DOS GRUPOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELL, Jason Pierre; GONÇALVES, Jairo Zacarias. On free subgroups in division rings. Proceedings of the American Mathematical Society, Menasha, v. 148, n. 5, p. 1953-1962, 2020. Disponível em: < http://dx.doi.org/10.1090/proc/14888 > DOI: 10.1090/proc/14888.
    • APA

      Bell, J. P., & Gonçalves, J. Z. (2020). On free subgroups in division rings. Proceedings of the American Mathematical Society, 148( 5), 1953-1962. doi:10.1090/proc/14888
    • NLM

      Bell JP, Gonçalves JZ. On free subgroups in division rings [Internet]. Proceedings of the American Mathematical Society. 2020 ; 148( 5): 1953-1962.Available from: http://dx.doi.org/10.1090/proc/14888
    • Vancouver

      Bell JP, Gonçalves JZ. On free subgroups in division rings [Internet]. Proceedings of the American Mathematical Society. 2020 ; 148( 5): 1953-1962.Available from: http://dx.doi.org/10.1090/proc/14888
  • Source: Journal of Algebra. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Jairo Zacarias; PASSMAN, Donald S. Free pairs of symmetric elements in normal subgroups of division rings. Journal of Algebra, New York, v. 550, p. 154-185, 2020. Disponível em: < http://dx.doi.org/10.1016/j.jalgebra.2020.01.012 > DOI: 10.1016/j.jalgebra.2020.01.012.
    • APA

      Gonçalves, J. Z., & Passman, D. S. (2020). Free pairs of symmetric elements in normal subgroups of division rings. Journal of Algebra, 550, 154-185. doi:10.1016/j.jalgebra.2020.01.012
    • NLM

      Gonçalves JZ, Passman DS. Free pairs of symmetric elements in normal subgroups of division rings [Internet]. Journal of Algebra. 2020 ; 550 154-185.Available from: http://dx.doi.org/10.1016/j.jalgebra.2020.01.012
    • Vancouver

      Gonçalves JZ, Passman DS. Free pairs of symmetric elements in normal subgroups of division rings [Internet]. Journal of Algebra. 2020 ; 550 154-185.Available from: http://dx.doi.org/10.1016/j.jalgebra.2020.01.012
  • Source: Mathematische Zeitschrift. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav; SCHWARZ, João Fernando. Noncommutative Noether’s problem vs classic Noether’s problem. Mathematische Zeitschrift, Heidelberg, v. 295, p. 1323-1335, 2020. Disponível em: < https://doi.org/10.1007/s00209-019-02397-4 > DOI: 10.1007/s00209-019-02397-4.
    • APA

      Futorny, V., & Schwarz, J. F. (2020). Noncommutative Noether’s problem vs classic Noether’s problem. Mathematische Zeitschrift, 295, 1323-1335. doi:10.1007/s00209-019-02397-4
    • NLM

      Futorny V, Schwarz JF. Noncommutative Noether’s problem vs classic Noether’s problem [Internet]. Mathematische Zeitschrift. 2020 ; 295 1323-1335.Available from: https://doi.org/10.1007/s00209-019-02397-4
    • Vancouver

      Futorny V, Schwarz JF. Noncommutative Noether’s problem vs classic Noether’s problem [Internet]. Mathematische Zeitschrift. 2020 ; 295 1323-1335.Available from: https://doi.org/10.1007/s00209-019-02397-4
  • Source: Communications in Algebra. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERREIRA, Bruno Leonardo Macedo; GUZZO JÚNIOR, Henrique; FERREIRA, Ruth Nascimento. Jordan derivations of alternative rings. Communications in Algebra, New York, v. 48, n. 2, p. 717-723, 2020. Disponível em: < https://doi.org/10.1080/00927872.2019.1659285 > DOI: 10.1080/00927872.2019.1659285.
    • APA

      Ferreira, B. L. M., Guzzo Júnior, H., & Ferreira, R. N. (2020). Jordan derivations of alternative rings. Communications in Algebra, 48( 2), 717-723. doi:10.1080/00927872.2019.1659285
    • NLM

      Ferreira BLM, Guzzo Júnior H, Ferreira RN. Jordan derivations of alternative rings [Internet]. Communications in Algebra. 2020 ; 48( 2): 717-723.Available from: https://doi.org/10.1080/00927872.2019.1659285
    • Vancouver

      Ferreira BLM, Guzzo Júnior H, Ferreira RN. Jordan derivations of alternative rings [Internet]. Communications in Algebra. 2020 ; 48( 2): 717-723.Available from: https://doi.org/10.1080/00927872.2019.1659285
  • Source: Communications in Algebra. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ÁLGEBRA HOMOLÓGICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MARCOS, Eduardo do Nascimento; MENDOZA, Octavio; SÁENZ, Corina. Cokernels of the Cartan matrix and stratifying systems. Communications in Algebra, New York, v. 47, n. 8, p. 3076-3093, 2019. Disponível em: < http://dx.doi.org/10.1080/00927872.2018.1550786 > DOI: 10.1080/00927872.2018.1550786.
    • APA

      Marcos, E. do N., Mendoza, O., & Sáenz, C. (2019). Cokernels of the Cartan matrix and stratifying systems. Communications in Algebra, 47( 8), 3076-3093. doi:10.1080/00927872.2018.1550786
    • NLM

      Marcos E do N, Mendoza O, Sáenz C. Cokernels of the Cartan matrix and stratifying systems [Internet]. Communications in Algebra. 2019 ; 47( 8): 3076-3093.Available from: http://dx.doi.org/10.1080/00927872.2018.1550786
    • Vancouver

      Marcos E do N, Mendoza O, Sáenz C. Cokernels of the Cartan matrix and stratifying systems [Internet]. Communications in Algebra. 2019 ; 47( 8): 3076-3093.Available from: http://dx.doi.org/10.1080/00927872.2018.1550786
  • Source: Communications in Algebra. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ANÉIS DE GRUPOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BAVULA, Volodymyr; FUTORNY, Vyacheslav. Rings of invariants of finite groups when the bad primes exist. Communications in Algebra, New York, v. 47, n. 10, p. 4114–4124, 2019. Disponível em: < http://dx.doi.org/10.1080/00927872.2019.1579336 > DOI: 10.1080/00927872.2019.1579336.
    • APA

      Bavula, V., & Futorny, V. (2019). Rings of invariants of finite groups when the bad primes exist. Communications in Algebra, 47( 10), 4114–4124. doi:10.1080/00927872.2019.1579336
    • NLM

      Bavula V, Futorny V. Rings of invariants of finite groups when the bad primes exist [Internet]. Communications in Algebra. 2019 ; 47( 10): 4114–4124.Available from: http://dx.doi.org/10.1080/00927872.2019.1579336
    • Vancouver

      Bavula V, Futorny V. Rings of invariants of finite groups when the bad primes exist [Internet]. Communications in Algebra. 2019 ; 47( 10): 4114–4124.Available from: http://dx.doi.org/10.1080/00927872.2019.1579336
  • Source: Revista de la Unión Matemática Argentina. Unidade: IME

    Subjects: ÁLGEBRAS DE OPERADORES, ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERREIRA, Bruno Leonardo Macedo; GUZZO JÚNIOR, Henrique. Lie n-multiplicative mappings on triangular n-matrix rings. Revista de la Unión Matemática Argentina, Bahía Blanca, v. 60, n. 1, p. 9-20, 2019. Disponível em: < http://dx.doi.org/10.33044/revuma.v60n1a02 > DOI: 10.33044/revuma.v60n1a02.
    • APA

      Ferreira, B. L. M., & Guzzo Júnior, H. (2019). Lie n-multiplicative mappings on triangular n-matrix rings. Revista de la Unión Matemática Argentina, 60( 1), 9-20. doi:10.33044/revuma.v60n1a02
    • NLM

      Ferreira BLM, Guzzo Júnior H. Lie n-multiplicative mappings on triangular n-matrix rings [Internet]. Revista de la Unión Matemática Argentina. 2019 ; 60( 1): 9-20.Available from: http://dx.doi.org/10.33044/revuma.v60n1a02
    • Vancouver

      Ferreira BLM, Guzzo Júnior H. Lie n-multiplicative mappings on triangular n-matrix rings [Internet]. Revista de la Unión Matemática Argentina. 2019 ; 60( 1): 9-20.Available from: http://dx.doi.org/10.33044/revuma.v60n1a02
  • Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ORSELI, Marcos Alexandre Laudelino; ORTIZ, Cristian. Estruturas de Poisson não comutativas. 2019.Universidade de São Paulo, São Paulo, 2019. Disponível em: < http://www.teses.usp.br/teses/disponiveis/45/45131/tde-25042019-140152/ >.
    • APA

      Orseli, M. A. L., & Ortiz, C. (2019). Estruturas de Poisson não comutativas. Universidade de São Paulo, São Paulo. Recuperado de http://www.teses.usp.br/teses/disponiveis/45/45131/tde-25042019-140152/
    • NLM

      Orseli MAL, Ortiz C. Estruturas de Poisson não comutativas [Internet]. 2019 ;Available from: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-25042019-140152/
    • Vancouver

      Orseli MAL, Ortiz C. Estruturas de Poisson não comutativas [Internet]. 2019 ;Available from: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-25042019-140152/

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2021