Filtros : "SUFICIÊNCIA" Limpar

Filtros



Refine with date range


  • Source: Probability in the Engineering and Informational Sciences. Unidade: IME

    Subjects: SUFICIÊNCIA, TEORIA DA INFORMAÇÃO, ENTROPIA, PROCESSOS DE POISSON

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BUENO, Vanderlei da Costa e BALAKRISHNAN, Narayanaswamy. A cumulative residual inaccuracy measure for coherent systems at component level and under nonhomogeneous poisson processes. Probability in the Engineering and Informational Sciences, v. 36, n. 2, p. 294-319, 2022Tradução . . Disponível em: https://doi.org/10.1017/S0269964820000637. Acesso em: 12 nov. 2024.
    • APA

      Bueno, V. da C., & Balakrishnan, N. (2022). A cumulative residual inaccuracy measure for coherent systems at component level and under nonhomogeneous poisson processes. Probability in the Engineering and Informational Sciences, 36( 2), 294-319. doi:10.1017/S0269964820000637
    • NLM

      Bueno V da C, Balakrishnan N. A cumulative residual inaccuracy measure for coherent systems at component level and under nonhomogeneous poisson processes [Internet]. Probability in the Engineering and Informational Sciences. 2022 ; 36( 2): 294-319.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1017/S0269964820000637
    • Vancouver

      Bueno V da C, Balakrishnan N. A cumulative residual inaccuracy measure for coherent systems at component level and under nonhomogeneous poisson processes [Internet]. Probability in the Engineering and Informational Sciences. 2022 ; 36( 2): 294-319.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1017/S0269964820000637
  • Unidade: IME

    Subjects: INFERÊNCIA ESTATÍSTICA, VEROSSIMILHANÇA, TEORIA ASSINTÓTICA, SUFICIÊNCIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SEN, Pranab Kumar e SINGER, Júlio da Motta e LIMA, Antonio Carlos Pedroso de. From finite sample to asymptotic methods in statistics. . Cambridge, UK: Cambridge University Press. Disponível em: https://doi.org/10.1017/CBO9780511806957. Acesso em: 12 nov. 2024. , 2010
    • APA

      Sen, P. K., Singer, J. da M., & Lima, A. C. P. de. (2010). From finite sample to asymptotic methods in statistics. Cambridge, UK: Cambridge University Press. doi:10.1017/CBO9780511806957
    • NLM

      Sen PK, Singer J da M, Lima ACP de. From finite sample to asymptotic methods in statistics [Internet]. 2010 ;[citado 2024 nov. 12 ] Available from: https://doi.org/10.1017/CBO9780511806957
    • Vancouver

      Sen PK, Singer J da M, Lima ACP de. From finite sample to asymptotic methods in statistics [Internet]. 2010 ;[citado 2024 nov. 12 ] Available from: https://doi.org/10.1017/CBO9780511806957
  • Source: Sankhyā: The Indian Journal of Statistics, Series A. Unidade: IME

    Subjects: DISTRIBUIÇÕES (PROBABILIDADE), SUFICIÊNCIA

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BASU, Debabrata e PEREIRA, Carlos Alberto de Bragança. A note on Blackwell sufficiency and a Skibinsky characterization of distributions. Sankhyā: The Indian Journal of Statistics, Series A, v. 45, n. 1, p. 99-104, 1983Tradução . . Disponível em: https://www.jstor.org/stable/25050417. Acesso em: 12 nov. 2024.
    • APA

      Basu, D., & Pereira, C. A. de B. (1983). A note on Blackwell sufficiency and a Skibinsky characterization of distributions. Sankhyā: The Indian Journal of Statistics, Series A, 45( 1), 99-104. Recuperado de https://www.jstor.org/stable/25050417
    • NLM

      Basu D, Pereira CA de B. A note on Blackwell sufficiency and a Skibinsky characterization of distributions [Internet]. Sankhyā: The Indian Journal of Statistics, Series A. 1983 ; 45( 1): 99-104.[citado 2024 nov. 12 ] Available from: https://www.jstor.org/stable/25050417
    • Vancouver

      Basu D, Pereira CA de B. A note on Blackwell sufficiency and a Skibinsky characterization of distributions [Internet]. Sankhyā: The Indian Journal of Statistics, Series A. 1983 ; 45( 1): 99-104.[citado 2024 nov. 12 ] Available from: https://www.jstor.org/stable/25050417

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024