Filtros : "SISTEMAS HAMILTONIANOS" "Piccione, Paolo" Removido: "GEOMETRIA GLOBAL" Limpar

Filtros



Refine with date range


  • Source: Annali di Matematica Pura ed Applicata (1923 -). Unidade: IME

    Subjects: SISTEMAS HAMILTONIANOS, GEOMETRIA DIFERENCIAL, MECÂNICA HAMILTONIANA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CAPONIO, Erasmo et al. Fixed energy solutions to the Euler-Lagrange equations of an indefinite Lagrangian with affine Noether charge. Annali di Matematica Pura ed Applicata (1923 -), v. 203, n. 4, p. 1819-1850, 2024Tradução . . Disponível em: https://doi.org/10.1007/s10231-024-01424-4. Acesso em: 07 nov. 2024.
    • APA

      Caponio, E., Corona, D., Giambó, R., & Piccione, P. (2024). Fixed energy solutions to the Euler-Lagrange equations of an indefinite Lagrangian with affine Noether charge. Annali di Matematica Pura ed Applicata (1923 -), 203( 4), 1819-1850. doi:10.1007/s10231-024-01424-4
    • NLM

      Caponio E, Corona D, Giambó R, Piccione P. Fixed energy solutions to the Euler-Lagrange equations of an indefinite Lagrangian with affine Noether charge [Internet]. Annali di Matematica Pura ed Applicata (1923 -). 2024 ; 203( 4): 1819-1850.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1007/s10231-024-01424-4
    • Vancouver

      Caponio E, Corona D, Giambó R, Piccione P. Fixed energy solutions to the Euler-Lagrange equations of an indefinite Lagrangian with affine Noether charge [Internet]. Annali di Matematica Pura ed Applicata (1923 -). 2024 ; 203( 4): 1819-1850.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1007/s10231-024-01424-4
  • Source: Calculus of Variations and Partial Differential Equations. Unidade: IME

    Subjects: SISTEMAS DINÂMICOS, SISTEMAS HAMILTONIANOS, VARIEDADES RIEMANNIANAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIAMBÓ, Roberto e GIANNONI, Fabio e PICCIONE, Paolo. Multiple brake orbits in m-dimensional disks. Calculus of Variations and Partial Differential Equations, v. No 2015, n. 3, p. 2553-2580, 2015Tradução . . Disponível em: https://doi.org/10.1007/s00526-015-0875-5. Acesso em: 07 nov. 2024.
    • APA

      Giambó, R., Giannoni, F., & Piccione, P. (2015). Multiple brake orbits in m-dimensional disks. Calculus of Variations and Partial Differential Equations, No 2015( 3), 2553-2580. doi:10.1007/s00526-015-0875-5
    • NLM

      Giambó R, Giannoni F, Piccione P. Multiple brake orbits in m-dimensional disks [Internet]. Calculus of Variations and Partial Differential Equations. 2015 ; No 2015( 3): 2553-2580.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1007/s00526-015-0875-5
    • Vancouver

      Giambó R, Giannoni F, Piccione P. Multiple brake orbits in m-dimensional disks [Internet]. Calculus of Variations and Partial Differential Equations. 2015 ; No 2015( 3): 2553-2580.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1007/s00526-015-0875-5
  • Source: Journal of Differential Equations. Unidade: IME

    Subjects: SISTEMAS DINÂMICOS, EQUAÇÕES DIFERENCIAIS, SISTEMAS LAGRANGIANOS, SISTEMAS HAMILTONIANOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIAMBÓ, Roberto e GIANNONI, Fabio e PICCIONE, Paolo. Examples with minimal number of brake orbits and homoclinics in annular potential regions. Journal of Differential Equations, v. 256, n. 8, p. 2677-2690, 2014Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2014.01.008. Acesso em: 07 nov. 2024.
    • APA

      Giambó, R., Giannoni, F., & Piccione, P. (2014). Examples with minimal number of brake orbits and homoclinics in annular potential regions. Journal of Differential Equations, 256( 8), 2677-2690. doi:10.1016/j.jde.2014.01.008
    • NLM

      Giambó R, Giannoni F, Piccione P. Examples with minimal number of brake orbits and homoclinics in annular potential regions [Internet]. Journal of Differential Equations. 2014 ; 256( 8): 2677-2690.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1016/j.jde.2014.01.008
    • Vancouver

      Giambó R, Giannoni F, Piccione P. Examples with minimal number of brake orbits and homoclinics in annular potential regions [Internet]. Journal of Differential Equations. 2014 ; 256( 8): 2677-2690.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1016/j.jde.2014.01.008
  • Source: Differential equations and dynamical systems. Conference titles: Conference on Differential Equations and Dynamical Systems. Unidade: IME

    Subjects: GEOMETRIA RIEMANNIANA, SISTEMAS HAMILTONIANOS

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PICCIONE, Paolo e TAUSK, Daniel Victor. Constrained Lagrangians and degenerate Hamiltonians on manifolds: an index theorem. 2002, Anais.. Providence: AMS, 2002. . Acesso em: 07 nov. 2024.
    • APA

      Piccione, P., & Tausk, D. V. (2002). Constrained Lagrangians and degenerate Hamiltonians on manifolds: an index theorem. In Differential equations and dynamical systems. Providence: AMS.
    • NLM

      Piccione P, Tausk DV. Constrained Lagrangians and degenerate Hamiltonians on manifolds: an index theorem. Differential equations and dynamical systems. 2002 ;[citado 2024 nov. 07 ]
    • Vancouver

      Piccione P, Tausk DV. Constrained Lagrangians and degenerate Hamiltonians on manifolds: an index theorem. Differential equations and dynamical systems. 2002 ;[citado 2024 nov. 07 ]
  • Source: Journal of Mathematical Analysis and its Applications. Unidade: IME

    Assunto: SISTEMAS HAMILTONIANOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EIDAM, José Carlos Corrêa et al. On the equality between the Maslov index and the spectral index for the semi-Riemannian Jacobi operator. Journal of Mathematical Analysis and its Applications, v. 268, n. 2, p. 564-589, 2002Tradução . . Disponível em: https://doi.org/10.1006/jmaa.2001.7817. Acesso em: 07 nov. 2024.
    • APA

      Eidam, J. C. C., Pereira, A. L., Piccione, P., & Tausk, D. V. (2002). On the equality between the Maslov index and the spectral index for the semi-Riemannian Jacobi operator. Journal of Mathematical Analysis and its Applications, 268( 2), 564-589. doi:10.1006/jmaa.2001.7817
    • NLM

      Eidam JCC, Pereira AL, Piccione P, Tausk DV. On the equality between the Maslov index and the spectral index for the semi-Riemannian Jacobi operator [Internet]. Journal of Mathematical Analysis and its Applications. 2002 ; 268( 2): 564-589.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1006/jmaa.2001.7817
    • Vancouver

      Eidam JCC, Pereira AL, Piccione P, Tausk DV. On the equality between the Maslov index and the spectral index for the semi-Riemannian Jacobi operator [Internet]. Journal of Mathematical Analysis and its Applications. 2002 ; 268( 2): 564-589.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1006/jmaa.2001.7817
  • Source: Proceedings of the London Mathematical Society. Unidade: IME

    Assunto: SISTEMAS HAMILTONIANOS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PICCIONE, Paolo e TAUSK, Daniel Victor. An index theorem for non-periodic solutions of Hamiltonian systems. Proceedings of the London Mathematical Society, v. 83, p. 351-389, 2001Tradução . . Disponível em: https://www.cambridge.org/core/journals/proceedings-of-the-london-mathematical-society/article/an-index-theorem-for-nonperiodic-solutions-of-hamiltonian-systems/81880A064BC0B0A2DFBE9A031B09A4CD. Acesso em: 07 nov. 2024.
    • APA

      Piccione, P., & Tausk, D. V. (2001). An index theorem for non-periodic solutions of Hamiltonian systems. Proceedings of the London Mathematical Society, 83, 351-389. Recuperado de https://www.cambridge.org/core/journals/proceedings-of-the-london-mathematical-society/article/an-index-theorem-for-nonperiodic-solutions-of-hamiltonian-systems/81880A064BC0B0A2DFBE9A031B09A4CD
    • NLM

      Piccione P, Tausk DV. An index theorem for non-periodic solutions of Hamiltonian systems [Internet]. Proceedings of the London Mathematical Society. 2001 ; 83 351-389.[citado 2024 nov. 07 ] Available from: https://www.cambridge.org/core/journals/proceedings-of-the-london-mathematical-society/article/an-index-theorem-for-nonperiodic-solutions-of-hamiltonian-systems/81880A064BC0B0A2DFBE9A031B09A4CD
    • Vancouver

      Piccione P, Tausk DV. An index theorem for non-periodic solutions of Hamiltonian systems [Internet]. Proceedings of the London Mathematical Society. 2001 ; 83 351-389.[citado 2024 nov. 07 ] Available from: https://www.cambridge.org/core/journals/proceedings-of-the-london-mathematical-society/article/an-index-theorem-for-nonperiodic-solutions-of-hamiltonian-systems/81880A064BC0B0A2DFBE9A031B09A4CD

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024