Cautious classification with data missing not at random using generative random forests (2021)
Source: Proceedings. Conference titles: European Conference on Symbolic and Quantitative Approaches with Uncertainty - ECSQARU. Unidade: IME
Subjects: APRENDIZADO COMPUTACIONAL, MODELOS PARA PROCESSOS ESTOCÁSTICOS
ABNT
VILLANUEVA LLERENA, Julissa Giuliana e MAUÁ, Denis Deratani e ANTONUCCI, Alessandro. Cautious classification with data missing not at random using generative random forests. 2021, Anais.. Cham: Springer, 2021. Disponível em: https://doi.org/10.1007/978-3-030-86772-0_21. Acesso em: 07 jan. 2025.APA
Villanueva Llerena, J. G., Mauá, D. D., & Antonucci, A. (2021). Cautious classification with data missing not at random using generative random forests. In Proceedings. Cham: Springer. doi:10.1007/978-3-030-86772-0_21NLM
Villanueva Llerena JG, Mauá DD, Antonucci A. Cautious classification with data missing not at random using generative random forests [Internet]. Proceedings. 2021 ;[citado 2025 jan. 07 ] Available from: https://doi.org/10.1007/978-3-030-86772-0_21Vancouver
Villanueva Llerena JG, Mauá DD, Antonucci A. Cautious classification with data missing not at random using generative random forests [Internet]. Proceedings. 2021 ;[citado 2025 jan. 07 ] Available from: https://doi.org/10.1007/978-3-030-86772-0_21