Fonte: Agronomy. Unidades: EESC, FMRP, ESALQ
Assuntos: BALANÇO HÍDRICO, EVAPOTRANSPIRAÇÃO, INFERÊNCIA BAYESIANA, INTELIGÊNCIA ARTIFICIAL, IRRIGAÇÃO, MODELOS PARA PROCESSOS ESTOCÁSTICOS, SISTEMAS DE APOIO À DECISÃO
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
RIBEIRO, Vitor P et al. A stochastic bayesian artificial intelligence framework to assess climatological water balance under missing variables for evapotranspiration estimates. Agronomy, v. 13, p. 1-28, 2023Tradução . . Disponível em: https://dx.doi.org/10.3390/agronomy13122970. Acesso em: 07 nov. 2024.APA
Ribeiro, V. P., Desuó Neto, L., Marques, P. A. A., Achcar, J. A., Junqueira, A. M., Chinatto Junior, A. W., et al. (2023). A stochastic bayesian artificial intelligence framework to assess climatological water balance under missing variables for evapotranspiration estimates. Agronomy, 13, 1-28. doi:10.3390/agronomy13122970NLM
Ribeiro VP, Desuó Neto L, Marques PAA, Achcar JA, Junqueira AM, Chinatto Junior AW, Junqueira CCM, Maciel CD, Balestieri JAP. A stochastic bayesian artificial intelligence framework to assess climatological water balance under missing variables for evapotranspiration estimates [Internet]. Agronomy. 2023 ; 13 1-28.[citado 2024 nov. 07 ] Available from: https://dx.doi.org/10.3390/agronomy13122970Vancouver
Ribeiro VP, Desuó Neto L, Marques PAA, Achcar JA, Junqueira AM, Chinatto Junior AW, Junqueira CCM, Maciel CD, Balestieri JAP. A stochastic bayesian artificial intelligence framework to assess climatological water balance under missing variables for evapotranspiration estimates [Internet]. Agronomy. 2023 ; 13 1-28.[citado 2024 nov. 07 ] Available from: https://dx.doi.org/10.3390/agronomy13122970