Source: Energy and AI. Unidade: EP
Subjects: GEOQUÍMICA, CONCENTRAÇÃO DE MINERAIS, MINERALOGIA, PRÉ-SAL
ABNT
OLIVEIRA, Lucas Abreu Blanes de et al. Stepped machine learning for the development of mineral models: Concepts and applications in the pre-salt reservoir carbonate rocks. Energy and AI, v. 3, p. 1-13, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.egyai.2021.100050. Acesso em: 19 nov. 2024.APA
Oliveira, L. A. B. de, Custódio, L. F. N., Fagundes, T. B., Ulsen, C., & Carneiro, C. de C. (2021). Stepped machine learning for the development of mineral models: Concepts and applications in the pre-salt reservoir carbonate rocks. Energy and AI, 3, 1-13. doi:10.1016/j.egyai.2021.100050NLM
Oliveira LAB de, Custódio LFN, Fagundes TB, Ulsen C, Carneiro C de C. Stepped machine learning for the development of mineral models: Concepts and applications in the pre-salt reservoir carbonate rocks [Internet]. Energy and AI. 2021 ;3 1-13.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1016/j.egyai.2021.100050Vancouver
Oliveira LAB de, Custódio LFN, Fagundes TB, Ulsen C, Carneiro C de C. Stepped machine learning for the development of mineral models: Concepts and applications in the pre-salt reservoir carbonate rocks [Internet]. Energy and AI. 2021 ;3 1-13.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1016/j.egyai.2021.100050