Filtros : "MASSA" "FFCLRP" Removidos: "Szanto de Toledo, A" "Rapid Communications in Mass Spectrometry" "Português" Limpar

Filtros



Refine with date range


  • Source: Differential and Integral Equations. Unidade: FFCLRP

    Subjects: MATEMÁTICA DA COMPUTAÇÃO, MASSA, INVARIANTES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ASLAN, Halit Sevki e EBERT, Marcelo Rempel e REISSIG, Michael. Scale-invariant semilinear damped wave models with mass term and integrable in time speed of propagation. Differential and Integral Equations, v. 36, n. 5/6, p. 453-490, 2023Tradução . . Disponível em: https://doi.org/10.57262/die036-0506-453. Acesso em: 12 nov. 2024.
    • APA

      Aslan, H. S., Ebert, M. R., & Reissig, M. (2023). Scale-invariant semilinear damped wave models with mass term and integrable in time speed of propagation. Differential and Integral Equations, 36( 5/6), 453-490. doi:10.57262/die036-0506-453
    • NLM

      Aslan HS, Ebert MR, Reissig M. Scale-invariant semilinear damped wave models with mass term and integrable in time speed of propagation [Internet]. Differential and Integral Equations. 2023 ; 36( 5/6): 453-490.[citado 2024 nov. 12 ] Available from: https://doi.org/10.57262/die036-0506-453
    • Vancouver

      Aslan HS, Ebert MR, Reissig M. Scale-invariant semilinear damped wave models with mass term and integrable in time speed of propagation [Internet]. Differential and Integral Equations. 2023 ; 36( 5/6): 453-490.[citado 2024 nov. 12 ] Available from: https://doi.org/10.57262/die036-0506-453

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024