Filtros : "HOMOTOPIA" "Holanda" Limpar

Filtros



Refine with date range


  • Source: Applied Categorical Structures. Unidade: ICMC

    Subjects: TEORIA DAS CATEGORIAS, HOMOTOPIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LOREGIAN, Fosco e SANTOS, Emily de Oliveira. Coends of higher arity. Applied Categorical Structures, v. 30, n. 1, p. 173-221, 2022Tradução . . Disponível em: https://doi.org/10.1007/s10485-021-09653-x. Acesso em: 11 nov. 2024.
    • APA

      Loregian, F., & Santos, E. de O. (2022). Coends of higher arity. Applied Categorical Structures, 30( 1), 173-221. doi:10.1007/s10485-021-09653-x
    • NLM

      Loregian F, Santos E de O. Coends of higher arity [Internet]. Applied Categorical Structures. 2022 ; 30( 1): 173-221.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s10485-021-09653-x
    • Vancouver

      Loregian F, Santos E de O. Coends of higher arity [Internet]. Applied Categorical Structures. 2022 ; 30( 1): 173-221.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s10485-021-09653-x
  • Source: Annals of Global Analysis and Geometry. Unidade: ICMC

    Subjects: TOPOLOGIA-GEOMETRIA, HOMOTOPIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MELO, T. de e HARTMANN, L e SPREAFICO, Mauro Flávio. The analytic torsion of a disc. Annals of Global Analysis and Geometry, v. 42, n. 1, p. 29-59, 2012Tradução . . Disponível em: https://doi.org/10.1007/s10455-011-9300-2. Acesso em: 11 nov. 2024.
    • APA

      Melo, T. de, Hartmann, L., & Spreafico, M. F. (2012). The analytic torsion of a disc. Annals of Global Analysis and Geometry, 42( 1), 29-59. doi:10.1007/s10455-011-9300-2
    • NLM

      Melo T de, Hartmann L, Spreafico MF. The analytic torsion of a disc [Internet]. Annals of Global Analysis and Geometry. 2012 ; 42( 1): 29-59.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s10455-011-9300-2
    • Vancouver

      Melo T de, Hartmann L, Spreafico MF. The analytic torsion of a disc [Internet]. Annals of Global Analysis and Geometry. 2012 ; 42( 1): 29-59.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s10455-011-9300-2
  • Source: Journal of Geometry and Physics. Unidade: ICMC

    Subjects: TOPOLOGIA-GEOMETRIA, HOMOTOPIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HARTMANN JUNIOR, Luiz Roberto e SPREAFICO, Mauro Flávio. The analytic torsion of a cone over an odd dimensional manifold. Journal of Geometry and Physics, v. 61, n. 3, p. 624-657, 2011Tradução . . Disponível em: https://doi.org/10.1016/j.geomphys.2010.11.011. Acesso em: 11 nov. 2024.
    • APA

      Hartmann Junior, L. R., & Spreafico, M. F. (2011). The analytic torsion of a cone over an odd dimensional manifold. Journal of Geometry and Physics, 61( 3), 624-657. doi:10.1016/j.geomphys.2010.11.011
    • NLM

      Hartmann Junior LR, Spreafico MF. The analytic torsion of a cone over an odd dimensional manifold [Internet]. Journal of Geometry and Physics. 2011 ; 61( 3): 624-657.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.geomphys.2010.11.011
    • Vancouver

      Hartmann Junior LR, Spreafico MF. The analytic torsion of a cone over an odd dimensional manifold [Internet]. Journal of Geometry and Physics. 2011 ; 61( 3): 624-657.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.geomphys.2010.11.011
  • Source: Journal de Mathématiques Pures et Appliquées. Unidade: ICMC

    Assunto: HOMOTOPIA

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HARTMANN JUNIOR, Luiz Roberto e SPREAFICO, Mauro Flávio. The analytic torsion of a cone over a sphere. Journal de Mathématiques Pures et Appliquées, v. 93, n. 4, p. 408-435, 2010Tradução . . Disponível em: https://doi.org/10.1016/j.matpur.2009.11.001. Acesso em: 11 nov. 2024.
    • APA

      Hartmann Junior, L. R., & Spreafico, M. F. (2010). The analytic torsion of a cone over a sphere. Journal de Mathématiques Pures et Appliquées, 93( 4), 408-435. doi:10.1016/j.matpur.2009.11.001
    • NLM

      Hartmann Junior LR, Spreafico MF. The analytic torsion of a cone over a sphere [Internet]. Journal de Mathématiques Pures et Appliquées. 2010 ; 93( 4): 408-435.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.matpur.2009.11.001
    • Vancouver

      Hartmann Junior LR, Spreafico MF. The analytic torsion of a cone over a sphere [Internet]. Journal de Mathématiques Pures et Appliquées. 2010 ; 93( 4): 408-435.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.matpur.2009.11.001
  • Source: Topology and its Applications. Unidade: IME

    Assunto: HOMOTOPIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOLASINSKI, Marek e GONÇALVES, Daciberg Lima. Spherical space forms - Homotopy types and self-equivalences for the groups Z/a x Z/b and Z/a x (Z/b x Q(2)i). Topology and its Applications, v. 146/147, p. 451-470, 2005Tradução . . Disponível em: https://doi.org/10.2307/3062102. Acesso em: 11 nov. 2024.
    • APA

      Golasinski, M., & Gonçalves, D. L. (2005). Spherical space forms - Homotopy types and self-equivalences for the groups Z/a x Z/b and Z/a x (Z/b x Q(2)i). Topology and its Applications, 146/147, 451-470. doi:10.2307/3062102
    • NLM

      Golasinski M, Gonçalves DL. Spherical space forms - Homotopy types and self-equivalences for the groups Z/a x Z/b and Z/a x (Z/b x Q(2)i) [Internet]. Topology and its Applications. 2005 ; 146/147 451-470.[citado 2024 nov. 11 ] Available from: https://doi.org/10.2307/3062102
    • Vancouver

      Golasinski M, Gonçalves DL. Spherical space forms - Homotopy types and self-equivalences for the groups Z/a x Z/b and Z/a x (Z/b x Q(2)i) [Internet]. Topology and its Applications. 2005 ; 146/147 451-470.[citado 2024 nov. 11 ] Available from: https://doi.org/10.2307/3062102
  • Source: Topology and its Applications. Unidade: IME

    Assunto: HOMOTOPIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e KELLY, Michael R. Maps between surfaces and minimal coincidence sets for homotopies: theory of fixed points and its applications. Topology and its Applications, v. 116, n. 1, p. 91-102, 2001Tradução . . Disponível em: https://doi.org/10.1016/S0166-8641(00)00084-5. Acesso em: 11 nov. 2024.
    • APA

      Gonçalves, D. L., & Kelly, M. R. (2001). Maps between surfaces and minimal coincidence sets for homotopies: theory of fixed points and its applications. Topology and its Applications, 116( 1), 91-102. doi:10.1016/S0166-8641(00)00084-5
    • NLM

      Gonçalves DL, Kelly MR. Maps between surfaces and minimal coincidence sets for homotopies: theory of fixed points and its applications [Internet]. Topology and its Applications. 2001 ; 116( 1): 91-102.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/S0166-8641(00)00084-5
    • Vancouver

      Gonçalves DL, Kelly MR. Maps between surfaces and minimal coincidence sets for homotopies: theory of fixed points and its applications [Internet]. Topology and its Applications. 2001 ; 116( 1): 91-102.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/S0166-8641(00)00084-5
  • Source: Topology and its Applications. Unidade: IME

    Assunto: HOMOTOPIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORSARI, Lucilia Daruiz e GONÇALVES, Daciberg Lima. A Van Kampen type theorem for coincidences. Topology and its Applications, v. 101, n. 2, p. 149-160, 2000Tradução . . Disponível em: https://doi.org/10.1016/s0166-8641(98)00115-1. Acesso em: 11 nov. 2024.
    • APA

      Borsari, L. D., & Gonçalves, D. L. (2000). A Van Kampen type theorem for coincidences. Topology and its Applications, 101( 2), 149-160. doi:10.1016/s0166-8641(98)00115-1
    • NLM

      Borsari LD, Gonçalves DL. A Van Kampen type theorem for coincidences [Internet]. Topology and its Applications. 2000 ; 101( 2): 149-160.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/s0166-8641(98)00115-1
    • Vancouver

      Borsari LD, Gonçalves DL. A Van Kampen type theorem for coincidences [Internet]. Topology and its Applications. 2000 ; 101( 2): 149-160.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/s0166-8641(98)00115-1

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024