Filtros : "GRUPOS TOPOLÓGICOS" "2005" "IME" Removidos: "Topologia Conjuntística" "GONCALVES, JAIRO ZACARIAS" "IP" Limpar

Filtros



Refine with date range


  • Source: Topology and its Applications. Unidade: IME

    Assunto: GRUPOS TOPOLÓGICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TOMITA, Artur Hideyuki. Countable compactness and finite powers of topological groups without convergent sequences. Topology and its Applications, v. 146/147, p. 527-538, 2005Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2003.10.008. Acesso em: 15 nov. 2024.
    • APA

      Tomita, A. H. (2005). Countable compactness and finite powers of topological groups without convergent sequences. Topology and its Applications, 146/147, 527-538. doi:10.1016/j.topol.2003.10.008
    • NLM

      Tomita AH. Countable compactness and finite powers of topological groups without convergent sequences [Internet]. Topology and its Applications. 2005 ; 146/147 527-538.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1016/j.topol.2003.10.008
    • Vancouver

      Tomita AH. Countable compactness and finite powers of topological groups without convergent sequences [Internet]. Topology and its Applications. 2005 ; 146/147 527-538.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1016/j.topol.2003.10.008
  • Source: Houston Journal of Mathematics. Unidade: IME

    Assunto: GRUPOS TOPOLÓGICOS

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e VIEIRA, João Peres. Free actions of abelian p-groups on the n-Torus. Houston Journal of Mathematics, v. 31, n. 1, p. 78-101, 2005Tradução . . Acesso em: 15 nov. 2024.
    • APA

      Gonçalves, D. L., & Vieira, J. P. (2005). Free actions of abelian p-groups on the n-Torus. Houston Journal of Mathematics, 31( 1), 78-101.
    • NLM

      Gonçalves DL, Vieira JP. Free actions of abelian p-groups on the n-Torus. Houston Journal of Mathematics. 2005 ; 31( 1): 78-101.[citado 2024 nov. 15 ]
    • Vancouver

      Gonçalves DL, Vieira JP. Free actions of abelian p-groups on the n-Torus. Houston Journal of Mathematics. 2005 ; 31( 1): 78-101.[citado 2024 nov. 15 ]
  • Source: Fundamenta Mathematicae. Unidade: IME

    Assunto: GRUPOS TOPOLÓGICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TOMITA, Artur Hideyuki. A solution to Comfort's question on the countable compactness of powers of a topological group. Fundamenta Mathematicae, v. 186, n. 1, p. 1-24, 2005Tradução . . Disponível em: https://doi.org/10.4064/fm186-1-1. Acesso em: 15 nov. 2024.
    • APA

      Tomita, A. H. (2005). A solution to Comfort's question on the countable compactness of powers of a topological group. Fundamenta Mathematicae, 186( 1), 1-24. doi:10.4064/fm186-1-1
    • NLM

      Tomita AH. A solution to Comfort's question on the countable compactness of powers of a topological group [Internet]. Fundamenta Mathematicae. 2005 ; 186( 1): 1-24.[citado 2024 nov. 15 ] Available from: https://doi.org/10.4064/fm186-1-1
    • Vancouver

      Tomita AH. A solution to Comfort's question on the countable compactness of powers of a topological group [Internet]. Fundamenta Mathematicae. 2005 ; 186( 1): 1-24.[citado 2024 nov. 15 ] Available from: https://doi.org/10.4064/fm186-1-1
  • Source: Topology and Its Applications. Unidade: IME

    Assunto: GRUPOS TOPOLÓGICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TOMITA, Artur Hideyuki. The weight of a countably compact group whose cardinality has countable cofinality. Topology and Its Applications, v. 150, n. 1-3, p. 197-205, 2005Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2004.11.016. Acesso em: 15 nov. 2024.
    • APA

      Tomita, A. H. (2005). The weight of a countably compact group whose cardinality has countable cofinality. Topology and Its Applications, 150( 1-3), 197-205. doi:10.1016/j.topol.2004.11.016
    • NLM

      Tomita AH. The weight of a countably compact group whose cardinality has countable cofinality [Internet]. Topology and Its Applications. 2005 ; 150( 1-3): 197-205.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1016/j.topol.2004.11.016
    • Vancouver

      Tomita AH. The weight of a countably compact group whose cardinality has countable cofinality [Internet]. Topology and Its Applications. 2005 ; 150( 1-3): 197-205.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1016/j.topol.2004.11.016
  • Source: Topology and its Applications. Unidade: IME

    Assunto: GRUPOS TOPOLÓGICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TOMITA, Artur Hideyuki. Square of countably compact groups without non trivial convergent sequences. Topology and its Applications, v. 153, n. 1, p. 107-122, 2005Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2005.01.026. Acesso em: 15 nov. 2024.
    • APA

      Tomita, A. H. (2005). Square of countably compact groups without non trivial convergent sequences. Topology and its Applications, 153( 1), 107-122. doi:10.1016/j.topol.2005.01.026
    • NLM

      Tomita AH. Square of countably compact groups without non trivial convergent sequences [Internet]. Topology and its Applications. 2005 ; 153( 1): 107-122.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1016/j.topol.2005.01.026
    • Vancouver

      Tomita AH. Square of countably compact groups without non trivial convergent sequences [Internet]. Topology and its Applications. 2005 ; 153( 1): 107-122.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1016/j.topol.2005.01.026

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024