Filtros : "EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS DE 2ª ORDEM" "Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)" Limpar

Filtros



Limitar por data


  • Fonte: Advanced Nonlinear Studies. Unidade: IME

    Assuntos: EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS DE 2ª ORDEM, MECÂNICA DOS SÓLIDOS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FIGUEIREDO, Giovany Malcher e SEVERO, Uberlandio Batista e SICILIANO, Gaetano. Multiplicity of positive solutions for a quasilinear Schrödinger equation with an almost critical nonlinearity. Advanced Nonlinear Studies, v. 20, n. 4, 2020Tradução . . Disponível em: https://doi.org/10.1515/ans-2020-2105. Acesso em: 01 nov. 2024.
    • APA

      Figueiredo, G. M., Severo, U. B., & Siciliano, G. (2020). Multiplicity of positive solutions for a quasilinear Schrödinger equation with an almost critical nonlinearity. Advanced Nonlinear Studies, 20( 4). doi:10.1515/ans-2020-2105
    • NLM

      Figueiredo GM, Severo UB, Siciliano G. Multiplicity of positive solutions for a quasilinear Schrödinger equation with an almost critical nonlinearity [Internet]. Advanced Nonlinear Studies. 2020 ; 20( 4):[citado 2024 nov. 01 ] Available from: https://doi.org/10.1515/ans-2020-2105
    • Vancouver

      Figueiredo GM, Severo UB, Siciliano G. Multiplicity of positive solutions for a quasilinear Schrödinger equation with an almost critical nonlinearity [Internet]. Advanced Nonlinear Studies. 2020 ; 20( 4):[citado 2024 nov. 01 ] Available from: https://doi.org/10.1515/ans-2020-2105
  • Fonte: Nonlinearity. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS DE 2ª ORDEM, SIMETRIA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MERCURI, Carlo e MOREIRA DOS SANTOS, Ederson. Quantitative symmetry breaking of groundstates for a class of weighted Emden-Fowler equations. Nonlinearity, v. 32, n. 11, p. 4445-4464, 2019Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/ab2d6f. Acesso em: 01 nov. 2024.
    • APA

      Mercuri, C., & Moreira dos Santos, E. (2019). Quantitative symmetry breaking of groundstates for a class of weighted Emden-Fowler equations. Nonlinearity, 32( 11), 4445-4464. doi:10.1088/1361-6544/ab2d6f
    • NLM

      Mercuri C, Moreira dos Santos E. Quantitative symmetry breaking of groundstates for a class of weighted Emden-Fowler equations [Internet]. Nonlinearity. 2019 ; 32( 11): 4445-4464.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1088/1361-6544/ab2d6f
    • Vancouver

      Mercuri C, Moreira dos Santos E. Quantitative symmetry breaking of groundstates for a class of weighted Emden-Fowler equations [Internet]. Nonlinearity. 2019 ; 32( 11): 4445-4464.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1088/1361-6544/ab2d6f
  • Fonte: Transactions of the American Mathematical Society. Unidade: ICMC

    Assuntos: ANÁLISE FUNCIONAL, OPERADORES DE SCHRODINGER, EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS DE 2ª ORDEM

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONHEURE, Denis et al. Paths to uniqueness of critical points and applications to partial differential equations. Transactions of the American Mathematical Society, v. 370, n. 10, p. 7081-7127, 2018Tradução . . Disponível em: https://doi.org/10.1090/tran/7231. Acesso em: 01 nov. 2024.
    • APA

      Bonheure, D., Földes, J., Moreira dos Santos, E., Saldaña, A., & Tavares, H. (2018). Paths to uniqueness of critical points and applications to partial differential equations. Transactions of the American Mathematical Society, 370( 10), 7081-7127. doi:10.1090/tran/7231
    • NLM

      Bonheure D, Földes J, Moreira dos Santos E, Saldaña A, Tavares H. Paths to uniqueness of critical points and applications to partial differential equations [Internet]. Transactions of the American Mathematical Society. 2018 ; 370( 10): 7081-7127.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1090/tran/7231
    • Vancouver

      Bonheure D, Földes J, Moreira dos Santos E, Saldaña A, Tavares H. Paths to uniqueness of critical points and applications to partial differential equations [Internet]. Transactions of the American Mathematical Society. 2018 ; 370( 10): 7081-7127.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1090/tran/7231
  • Unidade: IME

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS DE 2ª ORDEM

    Acesso à fonteComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MARTINS, Sérgio Tadao. Variação primeira e segunda para o primeiro autovalor de um problema elíptico. 2007. Dissertação (Mestrado) – Universidade de São Paulo, São Paulo, 2007. Disponível em: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-15022008-114522/. Acesso em: 01 nov. 2024.
    • APA

      Martins, S. T. (2007). Variação primeira e segunda para o primeiro autovalor de um problema elíptico (Dissertação (Mestrado). Universidade de São Paulo, São Paulo. Recuperado de http://www.teses.usp.br/teses/disponiveis/45/45131/tde-15022008-114522/
    • NLM

      Martins ST. Variação primeira e segunda para o primeiro autovalor de um problema elíptico [Internet]. 2007 ;[citado 2024 nov. 01 ] Available from: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-15022008-114522/
    • Vancouver

      Martins ST. Variação primeira e segunda para o primeiro autovalor de um problema elíptico [Internet]. 2007 ;[citado 2024 nov. 01 ] Available from: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-15022008-114522/

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2024