Filtros : "EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS DE 2ª ORDEM" "2018" Limpar

Filtros



Limitar por data


  • Fonte: Journal of Mathematical Analysis and Applications. Unidade: IME

    Assuntos: EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS DE 2ª ORDEM, EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LOPES, Pedro Tavares Paes e PEREIRA, Marcone Corrêa. Dynamical boundary conditions in a non-cylindrical domain for the Laplace equation. Journal of Mathematical Analysis and Applications, v. 465, n. 1, p. 379-402, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2018.05.015. Acesso em: 01 nov. 2024.
    • APA

      Lopes, P. T. P., & Pereira, M. C. (2018). Dynamical boundary conditions in a non-cylindrical domain for the Laplace equation. Journal of Mathematical Analysis and Applications, 465( 1), 379-402. doi:10.1016/j.jmaa.2018.05.015
    • NLM

      Lopes PTP, Pereira MC. Dynamical boundary conditions in a non-cylindrical domain for the Laplace equation [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; 465( 1): 379-402.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1016/j.jmaa.2018.05.015
    • Vancouver

      Lopes PTP, Pereira MC. Dynamical boundary conditions in a non-cylindrical domain for the Laplace equation [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; 465( 1): 379-402.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1016/j.jmaa.2018.05.015
  • Fonte: Transactions of the American Mathematical Society. Unidade: ICMC

    Assuntos: ANÁLISE FUNCIONAL, OPERADORES DE SCHRODINGER, EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS DE 2ª ORDEM

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONHEURE, Denis et al. Paths to uniqueness of critical points and applications to partial differential equations. Transactions of the American Mathematical Society, v. 370, n. 10, p. 7081-7127, 2018Tradução . . Disponível em: https://doi.org/10.1090/tran/7231. Acesso em: 01 nov. 2024.
    • APA

      Bonheure, D., Földes, J., Moreira dos Santos, E., Saldaña, A., & Tavares, H. (2018). Paths to uniqueness of critical points and applications to partial differential equations. Transactions of the American Mathematical Society, 370( 10), 7081-7127. doi:10.1090/tran/7231
    • NLM

      Bonheure D, Földes J, Moreira dos Santos E, Saldaña A, Tavares H. Paths to uniqueness of critical points and applications to partial differential equations [Internet]. Transactions of the American Mathematical Society. 2018 ; 370( 10): 7081-7127.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1090/tran/7231
    • Vancouver

      Bonheure D, Földes J, Moreira dos Santos E, Saldaña A, Tavares H. Paths to uniqueness of critical points and applications to partial differential equations [Internet]. Transactions of the American Mathematical Society. 2018 ; 370( 10): 7081-7127.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1090/tran/7231
  • Fonte: Communications in Contemporary Mathematics. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS DE 2ª ORDEM, MÉTODOS VARIACIONAIS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SOARES, Sérgio Henrique Monari e LEUYACC, Yony Raúl Santaria. Hamiltonian elliptic systems in dimension two with potentials which can vanish at infinity. Communications in Contemporary Mathematics, v. 20, n. 8, p. 1750053-1-1750053-37, 2018Tradução . . Disponível em: https://doi.org/10.1142/S0219199717500535. Acesso em: 01 nov. 2024.
    • APA

      Soares, S. H. M., & Leuyacc, Y. R. S. (2018). Hamiltonian elliptic systems in dimension two with potentials which can vanish at infinity. Communications in Contemporary Mathematics, 20( 8), 1750053-1-1750053-37. doi:10.1142/S0219199717500535
    • NLM

      Soares SHM, Leuyacc YRS. Hamiltonian elliptic systems in dimension two with potentials which can vanish at infinity [Internet]. Communications in Contemporary Mathematics. 2018 ; 20( 8): 1750053-1-1750053-37.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1142/S0219199717500535
    • Vancouver

      Soares SHM, Leuyacc YRS. Hamiltonian elliptic systems in dimension two with potentials which can vanish at infinity [Internet]. Communications in Contemporary Mathematics. 2018 ; 20( 8): 1750053-1-1750053-37.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1142/S0219199717500535

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2024