Filtros : "EQUAÇÕES DIFERENCIAIS ORDINÁRIAS" "Journal of Mathematical Analysis and Applications" Removidos: "Polônia" "Hernandez, Michelle Fernanda Pierri" Limpar

Filtros



Refine with date range


  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ESTOCÁSTICAS, INTEGRAL DE HENSTOCK, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, OPERADORES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello et al. Operator-valued stochastic differential equations in the context of Kurzweil-like equations. Journal of Mathematical Analysis and Applications, v. No 2023, n. 2, p. 1-27, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2023.127464. Acesso em: 18 nov. 2024.
    • APA

      Bonotto, E. de M., Collegari, R., Federson, M., & Gill, T. (2023). Operator-valued stochastic differential equations in the context of Kurzweil-like equations. Journal of Mathematical Analysis and Applications, No 2023( 2), 1-27. doi:10.1016/j.jmaa.2023.127464
    • NLM

      Bonotto E de M, Collegari R, Federson M, Gill T. Operator-valued stochastic differential equations in the context of Kurzweil-like equations [Internet]. Journal of Mathematical Analysis and Applications. 2023 ; No 2023( 2): 1-27.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.jmaa.2023.127464
    • Vancouver

      Bonotto E de M, Collegari R, Federson M, Gill T. Operator-valued stochastic differential equations in the context of Kurzweil-like equations [Internet]. Journal of Mathematical Analysis and Applications. 2023 ; No 2023( 2): 1-27.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.jmaa.2023.127464
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, ATRATORES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de e PIRES, Leonardo. Rate of convergence of attractors for singularly perturbed semilinear problems. Journal of Mathematical Analysis and Applications, v. 452, n. 1, p. 258-296, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2017.03.008. Acesso em: 18 nov. 2024.
    • APA

      Carvalho, A. N. de, & Pires, L. (2017). Rate of convergence of attractors for singularly perturbed semilinear problems. Journal of Mathematical Analysis and Applications, 452( 1), 258-296. doi:10.1016/j.jmaa.2017.03.008
    • NLM

      Carvalho AN de, Pires L. Rate of convergence of attractors for singularly perturbed semilinear problems [Internet]. Journal of Mathematical Analysis and Applications. 2017 ; 452( 1): 258-296.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.jmaa.2017.03.008
    • Vancouver

      Carvalho AN de, Pires L. Rate of convergence of attractors for singularly perturbed semilinear problems [Internet]. Journal of Mathematical Analysis and Applications. 2017 ; 452( 1): 258-296.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.jmaa.2017.03.008
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: SINGULARIDADES, TEORIA QUALITATIVA, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERCEC, Brigita et al. The center problem for a 1: -4 resonant quadratic system. Journal of Mathematical Analysis and Applications, v. 420, n. 2, p. 1568-1591, 2014Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2014.06.060. Acesso em: 18 nov. 2024.
    • APA

      Fercec, B., Giné, J., Mencinger, M., & Oliveira, R. D. dos S. (2014). The center problem for a 1: -4 resonant quadratic system. Journal of Mathematical Analysis and Applications, 420( 2), 1568-1591. doi:10.1016/j.jmaa.2014.06.060
    • NLM

      Fercec B, Giné J, Mencinger M, Oliveira RD dos S. The center problem for a 1: -4 resonant quadratic system [Internet]. Journal of Mathematical Analysis and Applications. 2014 ; 420( 2): 1568-1591.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.jmaa.2014.06.060
    • Vancouver

      Fercec B, Giné J, Mencinger M, Oliveira RD dos S. The center problem for a 1: -4 resonant quadratic system [Internet]. Journal of Mathematical Analysis and Applications. 2014 ; 420( 2): 1568-1591.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.jmaa.2014.06.060
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES DIFERENCIAIS FUNCIONAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de e CHOLEWA, J. W. Regularity of the solutions on the global attractor for a semilinear hyperbolic damped wave equation. Journal of Mathematical Analysis and Applications, v. 337, n. 2, p. 932-948, 2008Tradução . . Disponível em: http://www.sciencedirect.com/science/journal/0022247X. Acesso em: 18 nov. 2024.
    • APA

      Carvalho, A. N. de, & Cholewa, J. W. (2008). Regularity of the solutions on the global attractor for a semilinear hyperbolic damped wave equation. Journal of Mathematical Analysis and Applications, 337( 2), 932-948. Recuperado de http://www.sciencedirect.com/science/journal/0022247X
    • NLM

      Carvalho AN de, Cholewa JW. Regularity of the solutions on the global attractor for a semilinear hyperbolic damped wave equation [Internet]. Journal of Mathematical Analysis and Applications. 2008 ; 337( 2): 932-948.[citado 2024 nov. 18 ] Available from: http://www.sciencedirect.com/science/journal/0022247X
    • Vancouver

      Carvalho AN de, Cholewa JW. Regularity of the solutions on the global attractor for a semilinear hyperbolic damped wave equation [Internet]. Journal of Mathematical Analysis and Applications. 2008 ; 337( 2): 932-948.[citado 2024 nov. 18 ] Available from: http://www.sciencedirect.com/science/journal/0022247X
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES DIFERENCIAIS FUNCIONAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de e LOZADA-CRUZ, German. Patterns in parabolic problems with nonlinear boundary conditions. Journal of Mathematical Analysis and Applications, v. 325, n. ja 2007, p. 1216-1239, 2007Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2006.02.046. Acesso em: 18 nov. 2024.
    • APA

      Carvalho, A. N. de, & Lozada-Cruz, G. (2007). Patterns in parabolic problems with nonlinear boundary conditions. Journal of Mathematical Analysis and Applications, 325( ja 2007), 1216-1239. doi:10.1016/j.jmaa.2006.02.046
    • NLM

      Carvalho AN de, Lozada-Cruz G. Patterns in parabolic problems with nonlinear boundary conditions [Internet]. Journal of Mathematical Analysis and Applications. 2007 ; 325( ja 2007): 1216-1239.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.jmaa.2006.02.046
    • Vancouver

      Carvalho AN de, Lozada-Cruz G. Patterns in parabolic problems with nonlinear boundary conditions [Internet]. Journal of Mathematical Analysis and Applications. 2007 ; 325( ja 2007): 1216-1239.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.jmaa.2006.02.046
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES DIFERENCIAIS FUNCIONAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de e CHOLEWA, Jan W. Continuation and asymptotics of solutions to semilinear parabolic equations with critical nonlinearities. Journal of Mathematical Analysis and Applications, v. 310, n. 2, p. 557-578, 2005Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2005.02.024. Acesso em: 18 nov. 2024.
    • APA

      Carvalho, A. N. de, & Cholewa, J. W. (2005). Continuation and asymptotics of solutions to semilinear parabolic equations with critical nonlinearities. Journal of Mathematical Analysis and Applications, 310( 2), 557-578. doi:10.1016/j.jmaa.2005.02.024
    • NLM

      Carvalho AN de, Cholewa JW. Continuation and asymptotics of solutions to semilinear parabolic equations with critical nonlinearities [Internet]. Journal of Mathematical Analysis and Applications. 2005 ; 310( 2): 557-578.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.jmaa.2005.02.024
    • Vancouver

      Carvalho AN de, Cholewa JW. Continuation and asymptotics of solutions to semilinear parabolic equations with critical nonlinearities [Internet]. Journal of Mathematical Analysis and Applications. 2005 ; 310( 2): 557-578.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.jmaa.2005.02.024
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TABOAS, Placido Zoega. Periodic solutions of a forced Lotka-Volterra equation. Journal of Mathematical Analysis and Applications, v. 124, n. 1, p. 82–97, 1987Tradução . . Disponível em: https://doi.org/10.1016/0022-247x(87)90026-6. Acesso em: 18 nov. 2024.
    • APA

      Taboas, P. Z. (1987). Periodic solutions of a forced Lotka-Volterra equation. Journal of Mathematical Analysis and Applications, 124( 1), 82–97. doi:10.1016/0022-247x(87)90026-6
    • NLM

      Taboas PZ. Periodic solutions of a forced Lotka-Volterra equation [Internet]. Journal of Mathematical Analysis and Applications. 1987 ; 124( 1): 82–97.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/0022-247x(87)90026-6
    • Vancouver

      Taboas PZ. Periodic solutions of a forced Lotka-Volterra equation [Internet]. Journal of Mathematical Analysis and Applications. 1987 ; 124( 1): 82–97.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/0022-247x(87)90026-6
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ONUCHIC, Nelson e CASSAGO JUNIOR, Hermínio. Asymptotic behavior at infinity between the solutions of two systems of ordinary differential equations. Journal of Mathematical Analysis and Applications, v. 102, n. 2, p. Se 1984, 1984Tradução . . Disponível em: https://doi.org/10.1016/0022-247x(84)90175-6. Acesso em: 18 nov. 2024.
    • APA

      Onuchic, N., & Cassago Junior, H. (1984). Asymptotic behavior at infinity between the solutions of two systems of ordinary differential equations. Journal of Mathematical Analysis and Applications, 102( 2), Se 1984. doi:10.1016/0022-247x(84)90175-6
    • NLM

      Onuchic N, Cassago Junior H. Asymptotic behavior at infinity between the solutions of two systems of ordinary differential equations [Internet]. Journal of Mathematical Analysis and Applications. 1984 ; 102( 2): Se 1984.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/0022-247x(84)90175-6
    • Vancouver

      Onuchic N, Cassago Junior H. Asymptotic behavior at infinity between the solutions of two systems of ordinary differential equations [Internet]. Journal of Mathematical Analysis and Applications. 1984 ; 102( 2): Se 1984.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/0022-247x(84)90175-6
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      IZÉ, Antonio Fernandes e MOLFETTA, Natalino Adelmo de. Asymptotically autonomous neutral functional differential equations with time-dependent lag. Journal of Mathematical Analysis and Applications, v. 51, n. 2, p. 299-325, 1975Tradução . . Disponível em: https://doi.org/10.1016/0022-247x(75)90124-9. Acesso em: 18 nov. 2024.
    • APA

      Izé, A. F., & Molfetta, N. A. de. (1975). Asymptotically autonomous neutral functional differential equations with time-dependent lag. Journal of Mathematical Analysis and Applications, 51( 2), 299-325. doi:10.1016/0022-247x(75)90124-9
    • NLM

      Izé AF, Molfetta NA de. Asymptotically autonomous neutral functional differential equations with time-dependent lag [Internet]. Journal of Mathematical Analysis and Applications. 1975 ; 51( 2): 299-325.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/0022-247x(75)90124-9
    • Vancouver

      Izé AF, Molfetta NA de. Asymptotically autonomous neutral functional differential equations with time-dependent lag [Internet]. Journal of Mathematical Analysis and Applications. 1975 ; 51( 2): 299-325.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/0022-247x(75)90124-9

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024