Filtros : "EQUAÇÕES" "2007" Removidos: "ALGORITMOS" "GEOMETRIA" Limpar

Filtros



Refine with date range


  • Source: Journal of Mathematical Physics. Unidade: IF

    Subjects: EQUAÇÕES, ELETRODINÂMICA QUÂNTICA

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BAGROV, V G e BALDIOTTI, Mario Cesar e GITMAN, Dmitri Maximovitch. Charged particles in crossed and longitudinal electromagnetic fields and beam guides. Journal of Mathematical Physics, v. 48, n. 8, p. 082305/1-082305/15, 2007Tradução . . Disponível em: https://doi.org/10.1063/1.2771543. Acesso em: 18 nov. 2024.
    • APA

      Bagrov, V. G., Baldiotti, M. C., & Gitman, D. M. (2007). Charged particles in crossed and longitudinal electromagnetic fields and beam guides. Journal of Mathematical Physics, 48( 8), 082305/1-082305/15. doi:10.1063/1.2771543
    • NLM

      Bagrov VG, Baldiotti MC, Gitman DM. Charged particles in crossed and longitudinal electromagnetic fields and beam guides [Internet]. Journal of Mathematical Physics. 2007 ; 48( 8): 082305/1-082305/15.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1063/1.2771543
    • Vancouver

      Bagrov VG, Baldiotti MC, Gitman DM. Charged particles in crossed and longitudinal electromagnetic fields and beam guides [Internet]. Journal of Mathematical Physics. 2007 ; 48( 8): 082305/1-082305/15.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1063/1.2771543
  • Source: Journal of High Energy Physics. Unidade: IFSC

    Subjects: TEORIA DE CAMPOS, FÍSICA TEÓRICA, INTEGRAIS, EQUAÇÕES, SIMETRIA (FÍSICA DE PARTÍCULAS)

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERREIRA, Luiz Agostinho e ZAKRZEWSKI, Wojtek J. A simple formula for the conserved charges of soliton theories. Journal of High Energy Physics, n. 9, p. Se 2007, 2007Tradução . . Disponível em: https://doi.org/10.1088/1126-6708/2007/09/015. Acesso em: 18 nov. 2024.
    • APA

      Ferreira, L. A., & Zakrzewski, W. J. (2007). A simple formula for the conserved charges of soliton theories. Journal of High Energy Physics, ( 9), Se 2007. doi:10.1088/1126-6708/2007/09/015
    • NLM

      Ferreira LA, Zakrzewski WJ. A simple formula for the conserved charges of soliton theories [Internet]. Journal of High Energy Physics. 2007 ;( 9): Se 2007.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1088/1126-6708/2007/09/015
    • Vancouver

      Ferreira LA, Zakrzewski WJ. A simple formula for the conserved charges of soliton theories [Internet]. Journal of High Energy Physics. 2007 ;( 9): Se 2007.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1088/1126-6708/2007/09/015
  • Source: Proceedings of COBEM. Conference titles: International Congress of Mechanical Engineering. Unidade: EP

    Subjects: ENGENHARIA MECÂNICA, MECÂNICA CLÁSSICA, EQUAÇÕES, EDUCAÇÃO

    PrivadoHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PESCE, Celso Pupo e CASETTA, Leonardo. Variable mass systems dynamics in engineering mechanics education. 2007, Anais.. Brasília: ABCM, 2007. Disponível em: https://repositorio.usp.br/directbitstream/039a1e43-8f7f-4830-b606-c6820a4b7662/Pesce-2007-Variable%20mass%20systems%20dynamics%20in%20engineering%20mechanics%20education.pdf. Acesso em: 18 nov. 2024.
    • APA

      Pesce, C. P., & Casetta, L. (2007). Variable mass systems dynamics in engineering mechanics education. In Proceedings of COBEM. Brasília: ABCM. Recuperado de https://repositorio.usp.br/directbitstream/039a1e43-8f7f-4830-b606-c6820a4b7662/Pesce-2007-Variable%20mass%20systems%20dynamics%20in%20engineering%20mechanics%20education.pdf
    • NLM

      Pesce CP, Casetta L. Variable mass systems dynamics in engineering mechanics education [Internet]. Proceedings of COBEM. 2007 ;[citado 2024 nov. 18 ] Available from: https://repositorio.usp.br/directbitstream/039a1e43-8f7f-4830-b606-c6820a4b7662/Pesce-2007-Variable%20mass%20systems%20dynamics%20in%20engineering%20mechanics%20education.pdf
    • Vancouver

      Pesce CP, Casetta L. Variable mass systems dynamics in engineering mechanics education [Internet]. Proceedings of COBEM. 2007 ;[citado 2024 nov. 18 ] Available from: https://repositorio.usp.br/directbitstream/039a1e43-8f7f-4830-b606-c6820a4b7662/Pesce-2007-Variable%20mass%20systems%20dynamics%20in%20engineering%20mechanics%20education.pdf
  • Source: Communications in Analysis and Geometry. Unidade: FFCLRP

    Assunto: EQUAÇÕES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Alexandre e UHLENBECK, Karen. Moduli space theory for constant mean curvature surfaces immersed in space-forms. Communications in Analysis and Geometry, v. 15, n. 2, p. 299-305, 2007Tradução . . Disponível em: https://doi.org/10.4310/cag.2007.v15.n2.a4. Acesso em: 18 nov. 2024.
    • APA

      Gonçalves, A., & Uhlenbeck, K. (2007). Moduli space theory for constant mean curvature surfaces immersed in space-forms. Communications in Analysis and Geometry, 15( 2), 299-305. doi:10.4310/cag.2007.v15.n2.a4
    • NLM

      Gonçalves A, Uhlenbeck K. Moduli space theory for constant mean curvature surfaces immersed in space-forms [Internet]. Communications in Analysis and Geometry. 2007 ; 15( 2): 299-305.[citado 2024 nov. 18 ] Available from: https://doi.org/10.4310/cag.2007.v15.n2.a4
    • Vancouver

      Gonçalves A, Uhlenbeck K. Moduli space theory for constant mean curvature surfaces immersed in space-forms [Internet]. Communications in Analysis and Geometry. 2007 ; 15( 2): 299-305.[citado 2024 nov. 18 ] Available from: https://doi.org/10.4310/cag.2007.v15.n2.a4
  • Source: Proceedings of COBEM. Conference titles: International Congress of Mechanical Engineering. Unidade: EP

    Subjects: EQUAÇÕES, ROBÔS

    PrivadoHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIACAGLIA, Giorgio E. O. e KOTTKE, Henrique de Carmargo. The Newton-Euler multibody equations revisited. 2007, Anais.. Brasília: ABCM, 2007. Disponível em: https://repositorio.usp.br/directbitstream/336978d1-f585-451f-b6e0-764017b5de24/Giacaglia-2007-The%20Newton-Euler%20multibody%20equations%20revisited%20ok.pdf. Acesso em: 18 nov. 2024.
    • APA

      Giacaglia, G. E. O., & Kottke, H. de C. (2007). The Newton-Euler multibody equations revisited. In Proceedings of COBEM. Brasília: ABCM. Recuperado de https://repositorio.usp.br/directbitstream/336978d1-f585-451f-b6e0-764017b5de24/Giacaglia-2007-The%20Newton-Euler%20multibody%20equations%20revisited%20ok.pdf
    • NLM

      Giacaglia GEO, Kottke H de C. The Newton-Euler multibody equations revisited [Internet]. Proceedings of COBEM. 2007 ;[citado 2024 nov. 18 ] Available from: https://repositorio.usp.br/directbitstream/336978d1-f585-451f-b6e0-764017b5de24/Giacaglia-2007-The%20Newton-Euler%20multibody%20equations%20revisited%20ok.pdf
    • Vancouver

      Giacaglia GEO, Kottke H de C. The Newton-Euler multibody equations revisited [Internet]. Proceedings of COBEM. 2007 ;[citado 2024 nov. 18 ] Available from: https://repositorio.usp.br/directbitstream/336978d1-f585-451f-b6e0-764017b5de24/Giacaglia-2007-The%20Newton-Euler%20multibody%20equations%20revisited%20ok.pdf

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024