A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
AMORIM, Cleber A. et al. A new possibility for fermentation monitoring by electrical driven sensing of ultraviolet light and glucose. Biosensors, v. 10, n. 8, p. 97-1-97-12, 2020Tradução . . Disponível em: https://doi.org/10.3390/bios10080097. Acesso em: 02 nov. 2024.
APA
Amorim, C. A., Blanco, K. C., Costa, I. M., Araújo, E. P. de, Arantes, A. do N., Contiero, J., & Chiquito, A. J. (2020). A new possibility for fermentation monitoring by electrical driven sensing of ultraviolet light and glucose. Biosensors, 10( 8), 97-1-97-12. doi:10.3390/bios10080097
NLM
Amorim CA, Blanco KC, Costa IM, Araújo EP de, Arantes A do N, Contiero J, Chiquito AJ. A new possibility for fermentation monitoring by electrical driven sensing of ultraviolet light and glucose [Internet]. Biosensors. 2020 ; 10( 8): 97-1-97-12.[citado 2024 nov. 02 ] Available from: https://doi.org/10.3390/bios10080097
Vancouver
Amorim CA, Blanco KC, Costa IM, Araújo EP de, Arantes A do N, Contiero J, Chiquito AJ. A new possibility for fermentation monitoring by electrical driven sensing of ultraviolet light and glucose [Internet]. Biosensors. 2020 ; 10( 8): 97-1-97-12.[citado 2024 nov. 02 ] Available from: https://doi.org/10.3390/bios10080097
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
BARRA, Angélica Luana Carrilho et al. Essential metabolic routes as a way to ESKAPE from antibiotic resistance. Frontiers in Public Health, v. 8, p. 26-1-26-8, 2020Tradução . . Disponível em: https://doi.org/10.3389/fpubh.2020.00026. Acesso em: 02 nov. 2024.
APA
Barra, A. L. C., Dantas, L. de O. C., Morão, L. G., Gutierrez, R. F., Polikarpov, I., Wrenger, C., & Nascimento, A. S. (2020). Essential metabolic routes as a way to ESKAPE from antibiotic resistance. Frontiers in Public Health, 8, 26-1-26-8. doi:10.3389/fpubh.2020.00026
NLM
Barra ALC, Dantas L de OC, Morão LG, Gutierrez RF, Polikarpov I, Wrenger C, Nascimento AS. Essential metabolic routes as a way to ESKAPE from antibiotic resistance [Internet]. Frontiers in Public Health. 2020 ; 8 26-1-26-8.[citado 2024 nov. 02 ] Available from: https://doi.org/10.3389/fpubh.2020.00026
Vancouver
Barra ALC, Dantas L de OC, Morão LG, Gutierrez RF, Polikarpov I, Wrenger C, Nascimento AS. Essential metabolic routes as a way to ESKAPE from antibiotic resistance [Internet]. Frontiers in Public Health. 2020 ; 8 26-1-26-8.[citado 2024 nov. 02 ] Available from: https://doi.org/10.3389/fpubh.2020.00026
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
MINARINI, Luciene Andrade Da Rocha et al. Antimicrobial resistance as a global public health problem: how can we address it? [Editorial]. Frontiers in Public Health. Lausanne: Instituto de Física de São Carlos, Universidade de São Paulo. Disponível em: https://doi.org/10.3389/fpubh.2020.612844. Acesso em: 02 nov. 2024. , 2020
APA
Minarini, L. A. D. R., Andrade, L. N. de, De Gregorio, E., Grosso, F., Naas, T., Zarrilli, R., & Camargo, I. L. B. da C. (2020). Antimicrobial resistance as a global public health problem: how can we address it? [Editorial]. Frontiers in Public Health. Lausanne: Instituto de Física de São Carlos, Universidade de São Paulo. doi:10.3389/fpubh.2020.612844
NLM
Minarini LADR, Andrade LN de, De Gregorio E, Grosso F, Naas T, Zarrilli R, Camargo ILB da C. Antimicrobial resistance as a global public health problem: how can we address it? [Editorial] [Internet]. Frontiers in Public Health. 2020 ; No 2020 612844-1-612844-6.[citado 2024 nov. 02 ] Available from: https://doi.org/10.3389/fpubh.2020.612844
Vancouver
Minarini LADR, Andrade LN de, De Gregorio E, Grosso F, Naas T, Zarrilli R, Camargo ILB da C. Antimicrobial resistance as a global public health problem: how can we address it? [Editorial] [Internet]. Frontiers in Public Health. 2020 ; No 2020 612844-1-612844-6.[citado 2024 nov. 02 ] Available from: https://doi.org/10.3389/fpubh.2020.612844
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
SARTORI, Geraldo Rodrigues e NASCIMENTO, Alessandro Silva. Comparative analysis of electrostatic models for ligand docking. Frontiers in Molecular Bioscience, v. 6, p. 52-1-52-8, 2019Tradução . . Disponível em: https://doi.org/10.3389/fmolb.2019.00052. Acesso em: 02 nov. 2024.
APA
Sartori, G. R., & Nascimento, A. S. (2019). Comparative analysis of electrostatic models for ligand docking. Frontiers in Molecular Bioscience, 6, 52-1-52-8. doi:10.3389/fmolb.2019.00052
NLM
Sartori GR, Nascimento AS. Comparative analysis of electrostatic models for ligand docking [Internet]. Frontiers in Molecular Bioscience. 2019 ; 6 52-1-52-8.[citado 2024 nov. 02 ] Available from: https://doi.org/10.3389/fmolb.2019.00052
Vancouver
Sartori GR, Nascimento AS. Comparative analysis of electrostatic models for ligand docking [Internet]. Frontiers in Molecular Bioscience. 2019 ; 6 52-1-52-8.[citado 2024 nov. 02 ] Available from: https://doi.org/10.3389/fmolb.2019.00052
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
OLIVEIRA, Juliano Elvis et al. Poly(lactic acid)/carbon nanotube fibers as novel platforms for glucose biosensors. Biosensors, v. 2, n. 1, p. 70-82, 2012Tradução . . Disponível em: https://doi.org/10.3390/bios2010070. Acesso em: 02 nov. 2024.
APA
Oliveira, J. E., Mattoso, L. H. C., Medeiros, E. S., & Zucolotto, V. (2012). Poly(lactic acid)/carbon nanotube fibers as novel platforms for glucose biosensors. Biosensors, 2( 1), 70-82. doi:10.3390/bios2010070
NLM
Oliveira JE, Mattoso LHC, Medeiros ES, Zucolotto V. Poly(lactic acid)/carbon nanotube fibers as novel platforms for glucose biosensors [Internet]. Biosensors. 2012 ; 2( 1): 70-82.[citado 2024 nov. 02 ] Available from: https://doi.org/10.3390/bios2010070
Vancouver
Oliveira JE, Mattoso LHC, Medeiros ES, Zucolotto V. Poly(lactic acid)/carbon nanotube fibers as novel platforms for glucose biosensors [Internet]. Biosensors. 2012 ; 2( 1): 70-82.[citado 2024 nov. 02 ] Available from: https://doi.org/10.3390/bios2010070
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
VIEIRA, Nirton C. S. et al. Self-assembled films of dendrimers and metallophthalocyanines as FET-based glucose biosensors. Sensors, v. 11, n. 10, p. 9442-9449, 2011Tradução . . Disponível em: https://doi.org/10.3390/s111009442. Acesso em: 02 nov. 2024.
APA
Vieira, N. C. S., Figueiredo, A., Queiroz, A. A. A. de, Zucolotto, V., & Guimarães, F. E. G. (2011). Self-assembled films of dendrimers and metallophthalocyanines as FET-based glucose biosensors. Sensors, 11( 10), 9442-9449. doi:10.3390/s111009442
NLM
Vieira NCS, Figueiredo A, Queiroz AAA de, Zucolotto V, Guimarães FEG. Self-assembled films of dendrimers and metallophthalocyanines as FET-based glucose biosensors [Internet]. Sensors. 2011 ; 11( 10): 9442-9449.[citado 2024 nov. 02 ] Available from: https://doi.org/10.3390/s111009442
Vancouver
Vieira NCS, Figueiredo A, Queiroz AAA de, Zucolotto V, Guimarães FEG. Self-assembled films of dendrimers and metallophthalocyanines as FET-based glucose biosensors [Internet]. Sensors. 2011 ; 11( 10): 9442-9449.[citado 2024 nov. 02 ] Available from: https://doi.org/10.3390/s111009442
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
TRIVELLA, Daniela Barretto Barbosa et al. Structure and function of interleukin-22 and other members of the interleukin-10 family. Cellular and Molecular Life Sciences, v. 67, n. 17, p. 2909-2935, 2010Tradução . . Disponível em: https://doi.org/10.1016/10.1007/s00018-010-0380-0. Acesso em: 02 nov. 2024.
APA
Trivella, D. B. B., Ferreira Júnior, J. R., Dumoutier, L., Renauld, J. C., & Polikarpov, I. (2010). Structure and function of interleukin-22 and other members of the interleukin-10 family. Cellular and Molecular Life Sciences, 67( 17), 2909-2935. doi:10.1016/10.1007/s00018-010-0380-0
NLM
Trivella DBB, Ferreira Júnior JR, Dumoutier L, Renauld JC, Polikarpov I. Structure and function of interleukin-22 and other members of the interleukin-10 family [Internet]. Cellular and Molecular Life Sciences. 2010 ; 67( 17): 2909-2935.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1016/10.1007/s00018-010-0380-0
Vancouver
Trivella DBB, Ferreira Júnior JR, Dumoutier L, Renauld JC, Polikarpov I. Structure and function of interleukin-22 and other members of the interleukin-10 family [Internet]. Cellular and Molecular Life Sciences. 2010 ; 67( 17): 2909-2935.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1016/10.1007/s00018-010-0380-0
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
MORAES, Marli L. et al. Phytase immobilization on modified electrodes for amperometric biosensing. Sensors and Actuators B, v. 131, n. 1, p. 210-215, 2008Tradução . . Disponível em: https://doi.org/10.1016/j.snb.2007.11.004. Acesso em: 02 nov. 2024.
APA
Moraes, M. L., Oliveira Junior, O. N. de, Rodrigues Filho, U. P., & Ferreira, M. (2008). Phytase immobilization on modified electrodes for amperometric biosensing. Sensors and Actuators B, 131( 1), 210-215. doi:10.1016/j.snb.2007.11.004
NLM
Moraes ML, Oliveira Junior ON de, Rodrigues Filho UP, Ferreira M. Phytase immobilization on modified electrodes for amperometric biosensing [Internet]. Sensors and Actuators B. 2008 ; 131( 1): 210-215.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1016/j.snb.2007.11.004
Vancouver
Moraes ML, Oliveira Junior ON de, Rodrigues Filho UP, Ferreira M. Phytase immobilization on modified electrodes for amperometric biosensing [Internet]. Sensors and Actuators B. 2008 ; 131( 1): 210-215.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1016/j.snb.2007.11.004
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
PERINOTTO, Angelo Cesar et al. Dendrimer-assisted immobilization of alcohol dehydrogenase in nanostructured films for biosensing: ethanol detection using electrical capacitance measurements. Thin Solid Films, v. 516, n. 24, p. 9002-9005, 2008Tradução . . Disponível em: https://doi.org/10.1016/j.tsf.2007.11.087. Acesso em: 02 nov. 2024.
APA
Perinotto, A. C., Caseli, L., Hayasaka, C. O., Riul Júnior, A., Oliveira Junior, O. N. de, & Zucolotto, V. (2008). Dendrimer-assisted immobilization of alcohol dehydrogenase in nanostructured films for biosensing: ethanol detection using electrical capacitance measurements. Thin Solid Films, 516( 24), 9002-9005. doi:10.1016/j.tsf.2007.11.087
NLM
Perinotto AC, Caseli L, Hayasaka CO, Riul Júnior A, Oliveira Junior ON de, Zucolotto V. Dendrimer-assisted immobilization of alcohol dehydrogenase in nanostructured films for biosensing: ethanol detection using electrical capacitance measurements [Internet]. Thin Solid Films. 2008 ; 516( 24): 9002-9005.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1016/j.tsf.2007.11.087
Vancouver
Perinotto AC, Caseli L, Hayasaka CO, Riul Júnior A, Oliveira Junior ON de, Zucolotto V. Dendrimer-assisted immobilization of alcohol dehydrogenase in nanostructured films for biosensing: ethanol detection using electrical capacitance measurements [Internet]. Thin Solid Films. 2008 ; 516( 24): 9002-9005.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1016/j.tsf.2007.11.087