Filtros : "ATRATORES" "Financiamento Junta de Andalucía, España" Removido: "2016" Limpar

Filtros



Limitar por data


  • Fonte: Communications in Nonlinear Science and Numerical Simulation. Unidade: ICMC

    Assuntos: ATRATORES, MECÂNICA DOS FLUÍDOS, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LÓPEZ-LÁZARO, Heraclio e MARÍN-RUBIO, Pedro e PLANAS, Gabriela. Non-Newtonian incompressible fluids with nonlinear shear tensor and hereditary conditions. Communications in Nonlinear Science and Numerical Simulation, v. No 2024, p. 1-20, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2024.108204. Acesso em: 05 nov. 2024.
    • APA

      López-Lázaro, H., Marín-Rubio, P., & Planas, G. (2024). Non-Newtonian incompressible fluids with nonlinear shear tensor and hereditary conditions. Communications in Nonlinear Science and Numerical Simulation, No 2024, 1-20. doi:10.1016/j.cnsns.2024.108204
    • NLM

      López-Lázaro H, Marín-Rubio P, Planas G. Non-Newtonian incompressible fluids with nonlinear shear tensor and hereditary conditions [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2024 ; No 2024 1-20.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2024.108204
    • Vancouver

      López-Lázaro H, Marín-Rubio P, Planas G. Non-Newtonian incompressible fluids with nonlinear shear tensor and hereditary conditions [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2024 ; No 2024 1-20.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2024.108204
  • Fonte: Discrete and Continuous Dynamical Systems : Series B. Unidade: ICMC

    Assuntos: ANÁLISE GLOBAL, ATRATORES, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, GEOMETRIA DIFERENCIAL, ESPAÇOS SIMÉTRICOS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de et al. Structure of non-autonomous attractors for a class of diffusively coupled ODE. Discrete and Continuous Dynamical Systems : Series B, v. 28, n. Ja 2023, p. 426-448, 2023Tradução . . Disponível em: https://doi.org/10.3934/dcdsb.2022083. Acesso em: 05 nov. 2024.
    • APA

      Carvalho, A. N. de, Rocha, L. R. N., Langa, J. A., & Obaya, R. (2023). Structure of non-autonomous attractors for a class of diffusively coupled ODE. Discrete and Continuous Dynamical Systems : Series B, 28( Ja 2023), 426-448. doi:10.3934/dcdsb.2022083
    • NLM

      Carvalho AN de, Rocha LRN, Langa JA, Obaya R. Structure of non-autonomous attractors for a class of diffusively coupled ODE [Internet]. Discrete and Continuous Dynamical Systems : Series B. 2023 ; 28( Ja 2023): 426-448.[citado 2024 nov. 05 ] Available from: https://doi.org/10.3934/dcdsb.2022083
    • Vancouver

      Carvalho AN de, Rocha LRN, Langa JA, Obaya R. Structure of non-autonomous attractors for a class of diffusively coupled ODE [Internet]. Discrete and Continuous Dynamical Systems : Series B. 2023 ; 28( Ja 2023): 426-448.[citado 2024 nov. 05 ] Available from: https://doi.org/10.3934/dcdsb.2022083
  • Fonte: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Assuntos: ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Versão AceitaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOREIRA, Estefani Moraes e VALERO, José. Structure of the attractor for a non-local Chafee-Infante problem. Journal of Mathematical Analysis and Applications, v. 507, n. 2, p. 1-25, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2021.125801. Acesso em: 05 nov. 2024.
    • APA

      Moreira, E. M., & Valero, J. (2022). Structure of the attractor for a non-local Chafee-Infante problem. Journal of Mathematical Analysis and Applications, 507( 2), 1-25. doi:10.1016/j.jmaa.2021.125801
    • NLM

      Moreira EM, Valero J. Structure of the attractor for a non-local Chafee-Infante problem [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 507( 2): 1-25.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125801
    • Vancouver

      Moreira EM, Valero J. Structure of the attractor for a non-local Chafee-Infante problem [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 507( 2): 1-25.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125801
  • Fonte: Mathematical Methods in the Applied Sciences. Unidade: ICMC

    Assuntos: ATRATORES, ELASTICIDADE

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAÚJO, Rawlilson de Oliveira et al. Global attractors for a system of elasticity with small delays. Mathematical Methods in the Applied Sciences, v. 44, n. 8, p. 6911-6922, 2021Tradução . . Disponível em: https://doi.org/10.1002/mma.7232. Acesso em: 05 nov. 2024.
    • APA

      Araújo, R. de O., Bocanegra-Rodríguez, L. E., Calsavara, B. M. R., Seminario-Huertas, P. N., & Sotelo-Pejerrey, A. (2021). Global attractors for a system of elasticity with small delays. Mathematical Methods in the Applied Sciences, 44( 8), 6911-6922. doi:10.1002/mma.7232
    • NLM

      Araújo R de O, Bocanegra-Rodríguez LE, Calsavara BMR, Seminario-Huertas PN, Sotelo-Pejerrey A. Global attractors for a system of elasticity with small delays [Internet]. Mathematical Methods in the Applied Sciences. 2021 ; 44( 8): 6911-6922.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1002/mma.7232
    • Vancouver

      Araújo R de O, Bocanegra-Rodríguez LE, Calsavara BMR, Seminario-Huertas PN, Sotelo-Pejerrey A. Global attractors for a system of elasticity with small delays [Internet]. Mathematical Methods in the Applied Sciences. 2021 ; 44( 8): 6911-6922.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1002/mma.7232

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2024