Filtros : "ATRATORES" "Financiado pelo FEDER" Removido: "Indiana University Mathematics Journal" Limpar

Filtros



Refine with date range


  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: ATRATORES, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello et al. Upper and lower semicontinuity of impulsive cocycle attractors for impulsive nonautonomous systems. Journal of Dynamics and Differential Equations, v. 33, p. 463-487, 2021Tradução . . Disponível em: https://doi.org/10.1007/s10884-019-09815-5. Acesso em: 04 nov. 2024.
    • APA

      Bonotto, E. de M., Bortolan, M. C., Caraballo, T., & Collegari, R. (2021). Upper and lower semicontinuity of impulsive cocycle attractors for impulsive nonautonomous systems. Journal of Dynamics and Differential Equations, 33, 463-487. doi:10.1007/s10884-019-09815-5
    • NLM

      Bonotto E de M, Bortolan MC, Caraballo T, Collegari R. Upper and lower semicontinuity of impulsive cocycle attractors for impulsive nonautonomous systems [Internet]. Journal of Dynamics and Differential Equations. 2021 ; 33 463-487.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1007/s10884-019-09815-5
    • Vancouver

      Bonotto E de M, Bortolan MC, Caraballo T, Collegari R. Upper and lower semicontinuity of impulsive cocycle attractors for impulsive nonautonomous systems [Internet]. Journal of Dynamics and Differential Equations. 2021 ; 33 463-487.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1007/s10884-019-09815-5
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, ATRATORES, SISTEMAS DISSIPATIVO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CUI, Hongyong et al. Smoothing and finite-dimensionality of uniform attractors in Banach spaces. Journal of Differential Equations, v. 285, p. 383-428, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2021.03.013. Acesso em: 04 nov. 2024.
    • APA

      Cui, H., Carvalho, A. N. de, Cunha, A. C., & Langa, J. A. (2021). Smoothing and finite-dimensionality of uniform attractors in Banach spaces. Journal of Differential Equations, 285, 383-428. doi:10.1016/j.jde.2021.03.013
    • NLM

      Cui H, Carvalho AN de, Cunha AC, Langa JA. Smoothing and finite-dimensionality of uniform attractors in Banach spaces [Internet]. Journal of Differential Equations. 2021 ; 285 383-428.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1016/j.jde.2021.03.013
    • Vancouver

      Cui H, Carvalho AN de, Cunha AC, Langa JA. Smoothing and finite-dimensionality of uniform attractors in Banach spaces [Internet]. Journal of Differential Equations. 2021 ; 285 383-428.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1016/j.jde.2021.03.013
  • Source: Mathematics. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, ATRATORES

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CABALLERO, Rubén et al. About the structure of attractors for a nonlocal Chafee-Infante problem. Mathematics, v. 9, n. 4, p. 1-36, 2021Tradução . . Disponível em: https://doi.org/10.3390/math9040353. Acesso em: 04 nov. 2024.
    • APA

      Caballero, R., Carvalho, A. N. de, Marín-Rubio, P., & Valero, J. (2021). About the structure of attractors for a nonlocal Chafee-Infante problem. Mathematics, 9( 4), 1-36. doi:10.3390/math9040353
    • NLM

      Caballero R, Carvalho AN de, Marín-Rubio P, Valero J. About the structure of attractors for a nonlocal Chafee-Infante problem [Internet]. Mathematics. 2021 ; 9( 4): 1-36.[citado 2024 nov. 04 ] Available from: https://doi.org/10.3390/math9040353
    • Vancouver

      Caballero R, Carvalho AN de, Marín-Rubio P, Valero J. About the structure of attractors for a nonlocal Chafee-Infante problem [Internet]. Mathematics. 2021 ; 9( 4): 1-36.[citado 2024 nov. 04 ] Available from: https://doi.org/10.3390/math9040353
  • Source: Communications on Pure and Applied Analysis. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, ATRATORES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de e LANGA, José Antonio e ROBINSON, James C. Forwards dynamics of non-autonomous dynamical systems: driving semigroups without backwards uniqueness and structure of the attractor. Communications on Pure and Applied Analysis, v. 19, n. 4, p. 1997-2013, 2020Tradução . . Disponível em: https://doi.org/10.3934/cpaa.2020088. Acesso em: 04 nov. 2024.
    • APA

      Carvalho, A. N. de, Langa, J. A., & Robinson, J. C. (2020). Forwards dynamics of non-autonomous dynamical systems: driving semigroups without backwards uniqueness and structure of the attractor. Communications on Pure and Applied Analysis, 19( 4), 1997-2013. doi:10.3934/cpaa.2020088
    • NLM

      Carvalho AN de, Langa JA, Robinson JC. Forwards dynamics of non-autonomous dynamical systems: driving semigroups without backwards uniqueness and structure of the attractor [Internet]. Communications on Pure and Applied Analysis. 2020 ; 19( 4): 1997-2013.[citado 2024 nov. 04 ] Available from: https://doi.org/10.3934/cpaa.2020088
    • Vancouver

      Carvalho AN de, Langa JA, Robinson JC. Forwards dynamics of non-autonomous dynamical systems: driving semigroups without backwards uniqueness and structure of the attractor [Internet]. Communications on Pure and Applied Analysis. 2020 ; 19( 4): 1997-2013.[citado 2024 nov. 04 ] Available from: https://doi.org/10.3934/cpaa.2020088
  • Source: Discrete and Continuous Dynamical Systems : Series B. Unidade: ICMC

    Subjects: DINÂMICA TOPOLÓGICA, ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, ANÁLISE GLOBAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CABALLERO, Rubén et al. Robustness of dynamically gradient multivalued dynamical systems. Discrete and Continuous Dynamical Systems : Series B, v. 24, n. 3, p. 1049-1077, 2019Tradução . . Disponível em: https://doi.org/10.3934/dcdsb.2019006. Acesso em: 04 nov. 2024.
    • APA

      Caballero, R., Carvalho, A. N. de, Marín-Rubio, P., & Valero, J. (2019). Robustness of dynamically gradient multivalued dynamical systems. Discrete and Continuous Dynamical Systems : Series B, 24( 3), 1049-1077. doi:10.3934/dcdsb.2019006
    • NLM

      Caballero R, Carvalho AN de, Marín-Rubio P, Valero J. Robustness of dynamically gradient multivalued dynamical systems [Internet]. Discrete and Continuous Dynamical Systems : Series B. 2019 ; 24( 3): 1049-1077.[citado 2024 nov. 04 ] Available from: https://doi.org/10.3934/dcdsb.2019006
    • Vancouver

      Caballero R, Carvalho AN de, Marín-Rubio P, Valero J. Robustness of dynamically gradient multivalued dynamical systems [Internet]. Discrete and Continuous Dynamical Systems : Series B. 2019 ; 24( 3): 1049-1077.[citado 2024 nov. 04 ] Available from: https://doi.org/10.3934/dcdsb.2019006
  • Source: Nonlinearity. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, ATRATORES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BROCHE, Rita de Cássia Dornelas Sodré e CARVALHO, Alexandre Nolasco de e VALERO, José. A non-autonomous scalar one-dimensional dissipative parabolic problem: the description of the dynamics. Nonlinearity, v. 32, n. 12, p. 4912-4941, 2019Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/ab3f55. Acesso em: 04 nov. 2024.
    • APA

      Broche, R. de C. D. S., Carvalho, A. N. de, & Valero, J. (2019). A non-autonomous scalar one-dimensional dissipative parabolic problem: the description of the dynamics. Nonlinearity, 32( 12), 4912-4941. doi:10.1088/1361-6544/ab3f55
    • NLM

      Broche R de CDS, Carvalho AN de, Valero J. A non-autonomous scalar one-dimensional dissipative parabolic problem: the description of the dynamics [Internet]. Nonlinearity. 2019 ; 32( 12): 4912-4941.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1088/1361-6544/ab3f55
    • Vancouver

      Broche R de CDS, Carvalho AN de, Valero J. A non-autonomous scalar one-dimensional dissipative parabolic problem: the description of the dynamics [Internet]. Nonlinearity. 2019 ; 32( 12): 4912-4941.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1088/1361-6544/ab3f55
  • Source: Electronic Journal of Qualitative Theory of Differential Equations. Unidade: ICMC

    Subjects: SISTEMAS AUTÔNOMOS, ATRATORES, EQUAÇÕES IMPULSIVAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello et al. A survey on impulsive dynamical systems. Electronic Journal of Qualitative Theory of Differential Equations, v. 2016, n. 7, p. 1-27, 2016Tradução . . Disponível em: https://doi.org/10.14232/ejqtde.2016.8.7. Acesso em: 04 nov. 2024.
    • APA

      Bonotto, E. de M., Bortolan, M. C., Caraballo, T., & Collegari, R. (2016). A survey on impulsive dynamical systems. Electronic Journal of Qualitative Theory of Differential Equations, 2016( 7), 1-27. doi:10.14232/ejqtde.2016.8.7
    • NLM

      Bonotto E de M, Bortolan MC, Caraballo T, Collegari R. A survey on impulsive dynamical systems [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2016 ; 2016( 7): 1-27.[citado 2024 nov. 04 ] Available from: https://doi.org/10.14232/ejqtde.2016.8.7
    • Vancouver

      Bonotto E de M, Bortolan MC, Caraballo T, Collegari R. A survey on impulsive dynamical systems [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2016 ; 2016( 7): 1-27.[citado 2024 nov. 04 ] Available from: https://doi.org/10.14232/ejqtde.2016.8.7

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024