Filtros : "ATRATORES" "Reino Unido" Removidos: "ANÁLISE GLOBAL" "2016" Limpar

Filtros



Limitar por data


  • Fonte: Nonlinear Analysis: Hybrid Systems. Unidade: ICMC

    Assuntos: SISTEMAS DINÂMICOS, ATRATORES

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e KALITA, Piotr. Long-time behavior for impulsive generalized semiflows. Nonlinear Analysis: Hybrid Systems, v. 51, p. 1-25, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.nahs.2023.101432. Acesso em: 18 nov. 2024.
    • APA

      Bonotto, E. de M., & Kalita, P. (2024). Long-time behavior for impulsive generalized semiflows. Nonlinear Analysis: Hybrid Systems, 51, 1-25. doi:10.1016/j.nahs.2023.101432
    • NLM

      Bonotto E de M, Kalita P. Long-time behavior for impulsive generalized semiflows [Internet]. Nonlinear Analysis: Hybrid Systems. 2024 ; 51 1-25.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.nahs.2023.101432
    • Vancouver

      Bonotto E de M, Kalita P. Long-time behavior for impulsive generalized semiflows [Internet]. Nonlinear Analysis: Hybrid Systems. 2024 ; 51 1-25.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.nahs.2023.101432
  • Fonte: Nonlinear Analysis. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS COM RETARDAMENTO, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, ATRATORES

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LÓPEZ-LÁZARO, Heraclio e NASCIMENTO, Marcelo José Dias e RUBIO, Obidio. Finite fractal dimension of pullback attractors for semilinear heat equation with delay in some domain with moving boundary. Nonlinear Analysis, v. 225, p. 1-35, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.na.2022.113107. Acesso em: 18 nov. 2024.
    • APA

      López-Lázaro, H., Nascimento, M. J. D., & Rubio, O. (2022). Finite fractal dimension of pullback attractors for semilinear heat equation with delay in some domain with moving boundary. Nonlinear Analysis, 225, 1-35. doi:10.1016/j.na.2022.113107
    • NLM

      López-Lázaro H, Nascimento MJD, Rubio O. Finite fractal dimension of pullback attractors for semilinear heat equation with delay in some domain with moving boundary [Internet]. Nonlinear Analysis. 2022 ; 225 1-35.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.na.2022.113107
    • Vancouver

      López-Lázaro H, Nascimento MJD, Rubio O. Finite fractal dimension of pullback attractors for semilinear heat equation with delay in some domain with moving boundary [Internet]. Nonlinear Analysis. 2022 ; 225 1-35.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.na.2022.113107
  • Fonte: Chaos, Solitons and Fractals. Unidade: EACH

    Assuntos: ATRATORES, SISTEMAS DINÂMICOS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TILLES, Paulo Fernando Coimbra e CERDEIRA, Hilda A e FERREIRA, Fernando Fagundes. Local attractors, degeneracy and analyticity: symmetry effects on the locally coupled Kuramoto model. Chaos, Solitons and Fractals, v. 49, p. 32\201346, 2013Tradução . . Disponível em: https://doi.org/10.1016/j.chaos.2013.02.008. Acesso em: 18 nov. 2024.
    • APA

      Tilles, P. F. C., Cerdeira, H. A., & Ferreira, F. F. (2013). Local attractors, degeneracy and analyticity: symmetry effects on the locally coupled Kuramoto model. Chaos, Solitons and Fractals, 49, 32\201346. doi:10.1016/j.chaos.2013.02.008
    • NLM

      Tilles PFC, Cerdeira HA, Ferreira FF. Local attractors, degeneracy and analyticity: symmetry effects on the locally coupled Kuramoto model [Internet]. Chaos, Solitons and Fractals. 2013 ; 49 32\201346.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.chaos.2013.02.008
    • Vancouver

      Tilles PFC, Cerdeira HA, Ferreira FF. Local attractors, degeneracy and analyticity: symmetry effects on the locally coupled Kuramoto model [Internet]. Chaos, Solitons and Fractals. 2013 ; 49 32\201346.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.chaos.2013.02.008
  • Fonte: Ergodic Theory and Dynamical Systems. Unidade: IME

    Assuntos: ATRATORES, DINÂMICA UNIDIMENSIONAL

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VARGAS, Edson. Measure of minimal sets of polymodal maps. Ergodic Theory and Dynamical Systems, v. 16, n. 1, p. 159-178, 1996Tradução . . Disponível em: https://doi.org/10.1017/s0143385700008750. Acesso em: 18 nov. 2024.
    • APA

      Vargas, E. (1996). Measure of minimal sets of polymodal maps. Ergodic Theory and Dynamical Systems, 16( 1), 159-178. doi:10.1017/s0143385700008750
    • NLM

      Vargas E. Measure of minimal sets of polymodal maps [Internet]. Ergodic Theory and Dynamical Systems. 1996 ; 16( 1): 159-178.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1017/s0143385700008750
    • Vancouver

      Vargas E. Measure of minimal sets of polymodal maps [Internet]. Ergodic Theory and Dynamical Systems. 1996 ; 16( 1): 159-178.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1017/s0143385700008750

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2024