Filtros : "ATRATORES" "Caraballo, Tomás" Removido: "Indiana University Mathematics Journal" Limpar

Filtros



Refine with date range


  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, ATRATORES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELLUZI, Maykel et al. Long-time behavior for semilinear equation with time-dependent and almost sectorial linear operator. Journal of Dynamics and Differential Equations, 2024Tradução . . Disponível em: https://doi.org/10.1007/s10884-024-10378-3. Acesso em: 04 nov. 2024.
    • APA

      Belluzi, M., Caraballo, T., Nascimento, M. J. D., & Schiabel, K. (2024). Long-time behavior for semilinear equation with time-dependent and almost sectorial linear operator. Journal of Dynamics and Differential Equations. doi:10.1007/s10884-024-10378-3
    • NLM

      Belluzi M, Caraballo T, Nascimento MJD, Schiabel K. Long-time behavior for semilinear equation with time-dependent and almost sectorial linear operator [Internet]. Journal of Dynamics and Differential Equations. 2024 ;[citado 2024 nov. 04 ] Available from: https://doi.org/10.1007/s10884-024-10378-3
    • Vancouver

      Belluzi M, Caraballo T, Nascimento MJD, Schiabel K. Long-time behavior for semilinear equation with time-dependent and almost sectorial linear operator [Internet]. Journal of Dynamics and Differential Equations. 2024 ;[citado 2024 nov. 04 ] Available from: https://doi.org/10.1007/s10884-024-10378-3
  • Source: Abstracts. Conference titles: ICMC Summer Meeting on Differential Equations. Unidade: ICMC

    Subjects: TEORIA DA DIMENSÃO, ESPAÇOS DE BANACH, ATRATORES, EQUAÇÕES DIFERENCIAIS

    PrivadoAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LÓPEZ-LÁZARO, Heraclio et al. Time-dependent differential processes and their relationship with the fractal dimension theory. 2024, Anais.. São Carlos: ICMC-USP, 2024. Disponível em: http://summer.icmc.usp.br/summers/summer24/pg_abstract.php. Acesso em: 04 nov. 2024.
    • APA

      López-Lázaro, H., Carvalho, A. N. de, Caraballo, T., & Cunha, A. C. (2024). Time-dependent differential processes and their relationship with the fractal dimension theory. In Abstracts. São Carlos: ICMC-USP. Recuperado de http://summer.icmc.usp.br/summers/summer24/pg_abstract.php
    • NLM

      López-Lázaro H, Carvalho AN de, Caraballo T, Cunha AC. Time-dependent differential processes and their relationship with the fractal dimension theory [Internet]. Abstracts. 2024 ;[citado 2024 nov. 04 ] Available from: http://summer.icmc.usp.br/summers/summer24/pg_abstract.php
    • Vancouver

      López-Lázaro H, Carvalho AN de, Caraballo T, Cunha AC. Time-dependent differential processes and their relationship with the fractal dimension theory [Internet]. Abstracts. 2024 ;[citado 2024 nov. 04 ] Available from: http://summer.icmc.usp.br/summers/summer24/pg_abstract.php
  • Source: Abstracts. Conference titles: ICMC Summer Meeting on Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, ATRATORES

    PrivadoAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JULIO PÉREZ, Yessica Yuliet e CARABALLO, Tomás e CARVALHO, Alexandre Nolasco de. Local well posedness, regularity and comparison for solutions of abstract parabolic problems without uniqueness. 2024, Anais.. São Carlos: ICMC-USP, 2024. Disponível em: http://summer.icmc.usp.br/summers/summer24/pg_abstract.php. Acesso em: 04 nov. 2024.
    • APA

      Julio Pérez, Y. Y., Caraballo, T., & Carvalho, A. N. de. (2024). Local well posedness, regularity and comparison for solutions of abstract parabolic problems without uniqueness. In Abstracts. São Carlos: ICMC-USP. Recuperado de http://summer.icmc.usp.br/summers/summer24/pg_abstract.php
    • NLM

      Julio Pérez YY, Caraballo T, Carvalho AN de. Local well posedness, regularity and comparison for solutions of abstract parabolic problems without uniqueness [Internet]. Abstracts. 2024 ;[citado 2024 nov. 04 ] Available from: http://summer.icmc.usp.br/summers/summer24/pg_abstract.php
    • Vancouver

      Julio Pérez YY, Caraballo T, Carvalho AN de. Local well posedness, regularity and comparison for solutions of abstract parabolic problems without uniqueness [Internet]. Abstracts. 2024 ;[citado 2024 nov. 04 ] Available from: http://summer.icmc.usp.br/summers/summer24/pg_abstract.php
  • Source: Stochastics and Dynamics. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS ESTOCÁSTICAS, ATRATORES, SISTEMAS DISSIPATIVO, EQUAÇÕES DA ONDA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARABALLO, Tomás et al. Continuity and topological structural stability for nonautonomous random attractors. Stochastics and Dynamics, v. No 2022, n. 7, p. 2240024-1-2240024-28, 2022Tradução . . Disponível em: https://doi.org/10.1142/S021949372240024X. Acesso em: 04 nov. 2024.
    • APA

      Caraballo, T., Langa, J. A., Carvalho, A. N. de, & Oliveira-Sousa, A. do N. (2022). Continuity and topological structural stability for nonautonomous random attractors. Stochastics and Dynamics, No 2022( 7), 2240024-1-2240024-28. doi:10.1142/S021949372240024X
    • NLM

      Caraballo T, Langa JA, Carvalho AN de, Oliveira-Sousa A do N. Continuity and topological structural stability for nonautonomous random attractors [Internet]. Stochastics and Dynamics. 2022 ; No 2022( 7): 2240024-1-2240024-28.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1142/S021949372240024X
    • Vancouver

      Caraballo T, Langa JA, Carvalho AN de, Oliveira-Sousa A do N. Continuity and topological structural stability for nonautonomous random attractors [Internet]. Stochastics and Dynamics. 2022 ; No 2022( 7): 2240024-1-2240024-28.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1142/S021949372240024X
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: ATRATORES, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello et al. Upper and lower semicontinuity of impulsive cocycle attractors for impulsive nonautonomous systems. Journal of Dynamics and Differential Equations, v. 33, p. 463-487, 2021Tradução . . Disponível em: https://doi.org/10.1007/s10884-019-09815-5. Acesso em: 04 nov. 2024.
    • APA

      Bonotto, E. de M., Bortolan, M. C., Caraballo, T., & Collegari, R. (2021). Upper and lower semicontinuity of impulsive cocycle attractors for impulsive nonautonomous systems. Journal of Dynamics and Differential Equations, 33, 463-487. doi:10.1007/s10884-019-09815-5
    • NLM

      Bonotto E de M, Bortolan MC, Caraballo T, Collegari R. Upper and lower semicontinuity of impulsive cocycle attractors for impulsive nonautonomous systems [Internet]. Journal of Dynamics and Differential Equations. 2021 ; 33 463-487.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1007/s10884-019-09815-5
    • Vancouver

      Bonotto E de M, Bortolan MC, Caraballo T, Collegari R. Upper and lower semicontinuity of impulsive cocycle attractors for impulsive nonautonomous systems [Internet]. Journal of Dynamics and Differential Equations. 2021 ; 33 463-487.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1007/s10884-019-09815-5
  • Source: Electronic Journal of Qualitative Theory of Differential Equations. Unidade: ICMC

    Subjects: SISTEMAS AUTÔNOMOS, ATRATORES, EQUAÇÕES IMPULSIVAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello et al. A survey on impulsive dynamical systems. Electronic Journal of Qualitative Theory of Differential Equations, v. 2016, n. 7, p. 1-27, 2016Tradução . . Disponível em: https://doi.org/10.14232/ejqtde.2016.8.7. Acesso em: 04 nov. 2024.
    • APA

      Bonotto, E. de M., Bortolan, M. C., Caraballo, T., & Collegari, R. (2016). A survey on impulsive dynamical systems. Electronic Journal of Qualitative Theory of Differential Equations, 2016( 7), 1-27. doi:10.14232/ejqtde.2016.8.7
    • NLM

      Bonotto E de M, Bortolan MC, Caraballo T, Collegari R. A survey on impulsive dynamical systems [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2016 ; 2016( 7): 1-27.[citado 2024 nov. 04 ] Available from: https://doi.org/10.14232/ejqtde.2016.8.7
    • Vancouver

      Bonotto E de M, Bortolan MC, Caraballo T, Collegari R. A survey on impulsive dynamical systems [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2016 ; 2016( 7): 1-27.[citado 2024 nov. 04 ] Available from: https://doi.org/10.14232/ejqtde.2016.8.7
  • Source: Discrete and Continuous Dynamical Systems - Series B. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, EQUAÇÕES DIFERENCIAIS PARCIAIS, DINÂMICA TOPOLÓGICA, ATRATORES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARABALLO, Tomás et al. Equi-attraction and continuity of attractors for skew-product semiflows. Discrete and Continuous Dynamical Systems - Series B, v. No 2016, n. 9, p. 2949-2967, 2016Tradução . . Disponível em: https://doi.org/10.3934/dcdsb.2016081. Acesso em: 04 nov. 2024.
    • APA

      Caraballo, T., Carvalho, A. N. de, Costa, H. B. da, & Langa, J. A. (2016). Equi-attraction and continuity of attractors for skew-product semiflows. Discrete and Continuous Dynamical Systems - Series B, No 2016( 9), 2949-2967. doi:10.3934/dcdsb.2016081
    • NLM

      Caraballo T, Carvalho AN de, Costa HB da, Langa JA. Equi-attraction and continuity of attractors for skew-product semiflows [Internet]. Discrete and Continuous Dynamical Systems - Series B. 2016 ; No 2016( 9): 2949-2967.[citado 2024 nov. 04 ] Available from: https://doi.org/10.3934/dcdsb.2016081
    • Vancouver

      Caraballo T, Carvalho AN de, Costa HB da, Langa JA. Equi-attraction and continuity of attractors for skew-product semiflows [Internet]. Discrete and Continuous Dynamical Systems - Series B. 2016 ; No 2016( 9): 2949-2967.[citado 2024 nov. 04 ] Available from: https://doi.org/10.3934/dcdsb.2016081

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024