Filtros : "ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS" "2019" Removidos: "Misra, Kailash C." "Algebra and Discrete Mathematics" Limpar

Filtros



Refine with date range


  • Source: Rocky Mountain Journal of Mathematics. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERREIRA, Bruno Leonardo Macedo e GUZZO JÚNIOR, Henrique. Characterization of Lie multiplicative derivation on alternative rings. Rocky Mountain Journal of Mathematics, v. 49, n. 3, p. 761-772, 2019Tradução . . Disponível em: https://doi.org/10.1216/rmj-2019-49-3-761. Acesso em: 05 nov. 2024.
    • APA

      Ferreira, B. L. M., & Guzzo Júnior, H. (2019). Characterization of Lie multiplicative derivation on alternative rings. Rocky Mountain Journal of Mathematics, 49( 3), 761-772. doi:10.1216/rmj-2019-49-3-761
    • NLM

      Ferreira BLM, Guzzo Júnior H. Characterization of Lie multiplicative derivation on alternative rings [Internet]. Rocky Mountain Journal of Mathematics. 2019 ; 49( 3): 761-772.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1216/rmj-2019-49-3-761
    • Vancouver

      Ferreira BLM, Guzzo Júnior H. Characterization of Lie multiplicative derivation on alternative rings [Internet]. Rocky Mountain Journal of Mathematics. 2019 ; 49( 3): 761-772.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1216/rmj-2019-49-3-761
  • Source: International Mathematics Research Notices. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e GRANTCHAROV, Dimitar e RAMÍREZ, Luis Enrique. Drinfeld category and the classification of singular Gelfand–Tsetlin gln-modules. International Mathematics Research Notices, v. 2019, n. 5, p. 1463–1478, 2019Tradução . . Disponível em: https://doi.org/10.1093/imrn/rnx159. Acesso em: 05 nov. 2024.
    • APA

      Futorny, V., Grantcharov, D., & Ramírez, L. E. (2019). Drinfeld category and the classification of singular Gelfand–Tsetlin gln-modules. International Mathematics Research Notices, 2019( 5), 1463–1478. doi:10.1093/imrn/rnx159
    • NLM

      Futorny V, Grantcharov D, Ramírez LE. Drinfeld category and the classification of singular Gelfand–Tsetlin gln-modules [Internet]. International Mathematics Research Notices. 2019 ; 2019( 5): 1463–1478.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1093/imrn/rnx159
    • Vancouver

      Futorny V, Grantcharov D, Ramírez LE. Drinfeld category and the classification of singular Gelfand–Tsetlin gln-modules [Internet]. International Mathematics Research Notices. 2019 ; 2019( 5): 1463–1478.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1093/imrn/rnx159
  • Source: Journal of Pure and Applied Algebra. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, ÁLGEBRAS DE LIE, SUPERÁLGEBRAS DE LIE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e KŘIŽKA, Libor. Geometric construction of Gelfand-Tsetlin modules over simple Lie algebras. Journal of Pure and Applied Algebra, v. 223, n. 11, p. 4901-4924, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.jpaa.2019.02.021. Acesso em: 05 nov. 2024.
    • APA

      Futorny, V., & Křižka, L. (2019). Geometric construction of Gelfand-Tsetlin modules over simple Lie algebras. Journal of Pure and Applied Algebra, 223( 11), 4901-4924. doi:10.1016/j.jpaa.2019.02.021
    • NLM

      Futorny V, Křižka L. Geometric construction of Gelfand-Tsetlin modules over simple Lie algebras [Internet]. Journal of Pure and Applied Algebra. 2019 ; 223( 11): 4901-4924.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1016/j.jpaa.2019.02.021
    • Vancouver

      Futorny V, Křižka L. Geometric construction of Gelfand-Tsetlin modules over simple Lie algebras [Internet]. Journal of Pure and Applied Algebra. 2019 ; 223( 11): 4901-4924.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1016/j.jpaa.2019.02.021
  • Source: São Paulo Journal of Mathematical Sciences. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, ÁLGEBRAS DE JORDAN, SUPERÁLGEBRAS DE LIE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PETROGRADSKY, Victor e SHESTAKOV, Ivan P. On Jordan doubles of slow growth of Lie superalgebras. São Paulo Journal of Mathematical Sciences, v. 13, n. 1, p. 158-176, 2019Tradução . . Disponível em: https://doi.org/10.1007/s40863-019-00122-x. Acesso em: 05 nov. 2024.
    • APA

      Petrogradsky, V., & Shestakov, I. P. (2019). On Jordan doubles of slow growth of Lie superalgebras. São Paulo Journal of Mathematical Sciences, 13( 1), 158-176. doi:10.1007/s40863-019-00122-x
    • NLM

      Petrogradsky V, Shestakov IP. On Jordan doubles of slow growth of Lie superalgebras [Internet]. São Paulo Journal of Mathematical Sciences. 2019 ; 13( 1): 158-176.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1007/s40863-019-00122-x
    • Vancouver

      Petrogradsky V, Shestakov IP. On Jordan doubles of slow growth of Lie superalgebras [Internet]. São Paulo Journal of Mathematical Sciences. 2019 ; 13( 1): 158-176.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1007/s40863-019-00122-x
  • Source: Journal of Algebra. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, GRUPOS QUÂNTICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MURAKAMI, Lúcia Satie Ikemoto e PCHELINTSEV, Sergey Valentinovich e SHASHKOV, Oleg Vladimirovich. Finite-dimensional right alternative superalgebras with semisimple strongly alternative even part. Journal of Algebra, v. 528, p. 150-176, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2019.03.019. Acesso em: 05 nov. 2024.
    • APA

      Murakami, L. S. I., Pchelintsev, S. V., & Shashkov, O. V. (2019). Finite-dimensional right alternative superalgebras with semisimple strongly alternative even part. Journal of Algebra, 528, 150-176. doi:10.1016/j.jalgebra.2019.03.019
    • NLM

      Murakami LSI, Pchelintsev SV, Shashkov OV. Finite-dimensional right alternative superalgebras with semisimple strongly alternative even part [Internet]. Journal of Algebra. 2019 ;528 150-176.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1016/j.jalgebra.2019.03.019
    • Vancouver

      Murakami LSI, Pchelintsev SV, Shashkov OV. Finite-dimensional right alternative superalgebras with semisimple strongly alternative even part [Internet]. Journal of Algebra. 2019 ;528 150-176.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1016/j.jalgebra.2019.03.019
  • Source: Algebra and Logic. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KLEINFELD, E. e SHESTAKOV, Ivan P. Associators and commutators in alternative algebras. Algebra and Logic, v. 58, n. 4, p. 322-326, 2019Tradução . . Disponível em: https://doi.org/10.1007/s10469-019-09553-z. Acesso em: 05 nov. 2024.
    • APA

      Kleinfeld, E., & Shestakov, I. P. (2019). Associators and commutators in alternative algebras. Algebra and Logic, 58( 4), 322-326. doi:10.1007/s10469-019-09553-z
    • NLM

      Kleinfeld E, Shestakov IP. Associators and commutators in alternative algebras [Internet]. Algebra and Logic. 2019 ; 58( 4): 322-326.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1007/s10469-019-09553-z
    • Vancouver

      Kleinfeld E, Shestakov IP. Associators and commutators in alternative algebras [Internet]. Algebra and Logic. 2019 ; 58( 4): 322-326.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1007/s10469-019-09553-z
  • Source: São Paulo Journal of Mathematical Sciences. Unidades: IME, EACH

    Subjects: BIOMATEMÁTICA, ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, EQUAÇÕES LINEARES, DINÂMICA DE POPULAÇÕES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERNÁNDEZ, Juan Carlos Gutiérrez e GARCIA, Claudia Inés. Derivations of Lotka-Volterra algebras. São Paulo Journal of Mathematical Sciences, v. 13, n. 1, p. 292-304, 2019Tradução . . Disponível em: https://doi.org/10.1007/s40863-018-0090-3. Acesso em: 05 nov. 2024.
    • APA

      Fernández, J. C. G., & Garcia, C. I. (2019). Derivations of Lotka-Volterra algebras. São Paulo Journal of Mathematical Sciences, 13( 1), 292-304. doi:10.1007/s40863-018-0090-3
    • NLM

      Fernández JCG, Garcia CI. Derivations of Lotka-Volterra algebras [Internet]. São Paulo Journal of Mathematical Sciences. 2019 ; 13( 1): 292-304.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1007/s40863-018-0090-3
    • Vancouver

      Fernández JCG, Garcia CI. Derivations of Lotka-Volterra algebras [Internet]. São Paulo Journal of Mathematical Sciences. 2019 ; 13( 1): 292-304.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1007/s40863-018-0090-3
  • Source: Journal of Algebra and its Applications. Unidades: IME, EACH

    Subjects: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, EQUAÇÕES LINEARES, DINÂMICA DE POPULAÇÕES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERNÁNDEZ, Juan Carlos Gutiérrez e GARCIA, Claudia Inés. On Lotka-Volterra algebras. Journal of Algebra and its Applications, v. 18, n. 10, p. 1-19, 2019Tradução . . Disponível em: https://doi.org/10.1142/S0219498819501871. Acesso em: 05 nov. 2024.
    • APA

      Fernández, J. C. G., & Garcia, C. I. (2019). On Lotka-Volterra algebras. Journal of Algebra and its Applications, 18( 10), 1-19. doi:10.1142/S0219498819501871
    • NLM

      Fernández JCG, Garcia CI. On Lotka-Volterra algebras [Internet]. Journal of Algebra and its Applications. 2019 ; 18( 10): 1-19.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1142/S0219498819501871
    • Vancouver

      Fernández JCG, Garcia CI. On Lotka-Volterra algebras [Internet]. Journal of Algebra and its Applications. 2019 ; 18( 10): 1-19.[citado 2024 nov. 05 ] Available from: https://doi.org/10.1142/S0219498819501871

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024