Filtros : "ANÉIS E ÁLGEBRAS ASSOCIATIVOS" "GONCALVES, JAIRO ZACARIAS" "IME" Removidos: "Indexado no Biological Abstracts" "BARROSO, LUCIA PEREIRA" "FINEP 1266/130" "Stochastic Processes and their Applications" Limpar

Filtros



Refine with date range


  • Source: Journal of Algebra and Its Applications. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, TEORIA DOS GRUPOS, POLINÔMIOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Jairo Zacarias. Free symmetric pairs in the field of fractions of enveloping Lie algebras with involution. Journal of Algebra and Its Applications, v. 22, n. 7, 2023Tradução . . Disponível em: https://doi.org/10.1142/S0219498823501451. Acesso em: 17 nov. 2024.
    • APA

      Gonçalves, J. Z. (2023). Free symmetric pairs in the field of fractions of enveloping Lie algebras with involution. Journal of Algebra and Its Applications, 22( 7). doi:10.1142/S0219498823501451
    • NLM

      Gonçalves JZ. Free symmetric pairs in the field of fractions of enveloping Lie algebras with involution [Internet]. Journal of Algebra and Its Applications. 2023 ; 22( 7):[citado 2024 nov. 17 ] Available from: https://doi.org/10.1142/S0219498823501451
    • Vancouver

      Gonçalves JZ. Free symmetric pairs in the field of fractions of enveloping Lie algebras with involution [Internet]. Journal of Algebra and Its Applications. 2023 ; 22( 7):[citado 2024 nov. 17 ] Available from: https://doi.org/10.1142/S0219498823501451
  • Source: Proceedings of the American Mathematical Society. Unidade: IME

    Subjects: TEORIA DOS CAMPOS, ANÉIS E ÁLGEBRAS ASSOCIATIVOS, TEORIA DOS GRUPOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELL, Jason Pierre e GONÇALVES, Jairo Zacarias. On free subgroups in division rings. Proceedings of the American Mathematical Society, v. 148, n. 5, p. 1953-1962, 2020Tradução . . Disponível em: https://doi.org/10.1090/proc/14888. Acesso em: 17 nov. 2024.
    • APA

      Bell, J. P., & Gonçalves, J. Z. (2020). On free subgroups in division rings. Proceedings of the American Mathematical Society, 148( 5), 1953-1962. doi:10.1090/proc/14888
    • NLM

      Bell JP, Gonçalves JZ. On free subgroups in division rings [Internet]. Proceedings of the American Mathematical Society. 2020 ; 148( 5): 1953-1962.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1090/proc/14888
    • Vancouver

      Bell JP, Gonçalves JZ. On free subgroups in division rings [Internet]. Proceedings of the American Mathematical Society. 2020 ; 148( 5): 1953-1962.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1090/proc/14888
  • Source: Journal of Algebra. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Jairo Zacarias e PASSMAN, Donald S. Free pairs of symmetric elements in normal subgroups of division rings. Journal of Algebra, v. 550, p. 154-185, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2020.01.012. Acesso em: 17 nov. 2024.
    • APA

      Gonçalves, J. Z., & Passman, D. S. (2020). Free pairs of symmetric elements in normal subgroups of division rings. Journal of Algebra, 550, 154-185. doi:10.1016/j.jalgebra.2020.01.012
    • NLM

      Gonçalves JZ, Passman DS. Free pairs of symmetric elements in normal subgroups of division rings [Internet]. Journal of Algebra. 2020 ; 550 154-185.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.jalgebra.2020.01.012
    • Vancouver

      Gonçalves JZ, Passman DS. Free pairs of symmetric elements in normal subgroups of division rings [Internet]. Journal of Algebra. 2020 ; 550 154-185.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.jalgebra.2020.01.012
  • Source: Forum Mathematicum. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, GRUPOS ABELIANOS, ANÉIS COM DIVISÃO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Jairo Zacarias. Free subgroups in k(x 1,.. ,x n )(X;σ) and k(x,y)(k;σ). Forum Mathematicum, v. 31, n. 3, p. 769-777, 2019Tradução . . Disponível em: https://doi.org/10.1515/forum-2017-0248. Acesso em: 17 nov. 2024.
    • APA

      Gonçalves, J. Z. (2019). Free subgroups in k(x 1,.. ,x n )(X;σ) and k(x,y)(k;σ). Forum Mathematicum, 31( 3), 769-777. doi:10.1515/forum-2017-0248
    • NLM

      Gonçalves JZ. Free subgroups in k(x 1,.. ,x n )(X;σ) and k(x,y)(k;σ) [Internet]. Forum Mathematicum. 2019 ; 31( 3): 769-777.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1515/forum-2017-0248
    • Vancouver

      Gonçalves JZ. Free subgroups in k(x 1,.. ,x n )(X;σ) and k(x,y)(k;σ) [Internet]. Forum Mathematicum. 2019 ; 31( 3): 769-777.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1515/forum-2017-0248
  • Source: Journal of Algebra. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ANÉIS COM DIVISÃO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERREIRA, Vitor de Oliveira e FORNAROLI, Erica Z e GONÇALVES, Jairo Zacarias. Free algebras in division rings with an involution. Journal of Algebra, v. 509, p. 292-306, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2018.01.025. Acesso em: 17 nov. 2024.
    • APA

      Ferreira, V. de O., Fornaroli, E. Z., & Gonçalves, J. Z. (2018). Free algebras in division rings with an involution. Journal of Algebra, 509, 292-306. doi:10.1016/j.jalgebra.2018.01.025
    • NLM

      Ferreira V de O, Fornaroli EZ, Gonçalves JZ. Free algebras in division rings with an involution [Internet]. Journal of Algebra. 2018 ; 509 292-306.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.jalgebra.2018.01.025
    • Vancouver

      Ferreira V de O, Fornaroli EZ, Gonçalves JZ. Free algebras in division rings with an involution [Internet]. Journal of Algebra. 2018 ; 509 292-306.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.jalgebra.2018.01.025
  • Source: Archiv der Mathematik. Unidade: IME

    Subjects: ANÉIS DE GRUPOS, ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BROCHE, Osnel e GONÇALVES, Jairo Zacarias e DEL RIO, Angel. Group algebras whose units satisfy a Laurent polynomial identity. Archiv der Mathematik, v. 111, n. 4, p. 353–367, 2018Tradução . . Disponível em: https://doi.org/10.1007/s00013-018-1223-8. Acesso em: 17 nov. 2024.
    • APA

      Broche, O., Gonçalves, J. Z., & Del rio, A. (2018). Group algebras whose units satisfy a Laurent polynomial identity. Archiv der Mathematik, 111( 4), 353–367. doi:10.1007/s00013-018-1223-8
    • NLM

      Broche O, Gonçalves JZ, Del rio A. Group algebras whose units satisfy a Laurent polynomial identity [Internet]. Archiv der Mathematik. 2018 ; 111( 4): 353–367.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1007/s00013-018-1223-8
    • Vancouver

      Broche O, Gonçalves JZ, Del rio A. Group algebras whose units satisfy a Laurent polynomial identity [Internet]. Archiv der Mathematik. 2018 ; 111( 4): 353–367.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1007/s00013-018-1223-8
  • Source: Journal of Algebra and Its Applications. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ANÉIS COM DIVISÃO, GRUPOS LIVRES, TEORIA DOS GRUPOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Jairo Zacarias. Free pairs of symmetric and unitary units in normal subgroups of a division ring. Journal of Algebra and Its Applications, v. 16, n. 6, p. [17 ], 2017Tradução . . Disponível em: https://doi.org/10.1142/s0219498817501080. Acesso em: 17 nov. 2024.
    • APA

      Gonçalves, J. Z. (2017). Free pairs of symmetric and unitary units in normal subgroups of a division ring. Journal of Algebra and Its Applications, 16( 6), [17 ]. doi:10.1142/s0219498817501080
    • NLM

      Gonçalves JZ. Free pairs of symmetric and unitary units in normal subgroups of a division ring [Internet]. Journal of Algebra and Its Applications. 2017 ; 16( 6): [17 ].[citado 2024 nov. 17 ] Available from: https://doi.org/10.1142/s0219498817501080
    • Vancouver

      Gonçalves JZ. Free pairs of symmetric and unitary units in normal subgroups of a division ring [Internet]. Journal of Algebra and Its Applications. 2017 ; 16( 6): [17 ].[citado 2024 nov. 17 ] Available from: https://doi.org/10.1142/s0219498817501080
  • Source: São Paulo Journal of Mathematical Sciences. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, GRUPOS LIVRES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Jairo Zacarias e SHIRVANI, Mazi. Free symmetric and unitary pairs in group algebras with involution. São Paulo Journal of Mathematical Sciences, v. 10, n. 1, p. 122-139, 2016Tradução . . Disponível em: https://doi.org/10.1007/s40863-015-0026-0. Acesso em: 17 nov. 2024.
    • APA

      Gonçalves, J. Z., & Shirvani, M. (2016). Free symmetric and unitary pairs in group algebras with involution. São Paulo Journal of Mathematical Sciences, 10( 1), 122-139. doi:10.1007/s40863-015-0026-0
    • NLM

      Gonçalves JZ, Shirvani M. Free symmetric and unitary pairs in group algebras with involution [Internet]. São Paulo Journal of Mathematical Sciences. 2016 ; 10( 1): 122-139.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1007/s40863-015-0026-0
    • Vancouver

      Gonçalves JZ, Shirvani M. Free symmetric and unitary pairs in group algebras with involution [Internet]. São Paulo Journal of Mathematical Sciences. 2016 ; 10( 1): 122-139.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1007/s40863-015-0026-0
  • Source: Journal of Algebra. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ANÉIS COM DIVISÃO, ÁLGEBRAS LIVRES, GEOMETRIA ALGÉBRICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELL, Jason Pierre e GONÇALVES, Jairo Zacarias. Free algebras and free groups in Ore extensions and free group algebras in division rings. Journal of Algebra, v. 455, p. 235-250, 2016Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2016.02.011. Acesso em: 17 nov. 2024.
    • APA

      Bell, J. P., & Gonçalves, J. Z. (2016). Free algebras and free groups in Ore extensions and free group algebras in division rings. Journal of Algebra, 455, 235-250. doi:10.1016/j.jalgebra.2016.02.011
    • NLM

      Bell JP, Gonçalves JZ. Free algebras and free groups in Ore extensions and free group algebras in division rings [Internet]. Journal of Algebra. 2016 ; 455 235-250.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.jalgebra.2016.02.011
    • Vancouver

      Bell JP, Gonçalves JZ. Free algebras and free groups in Ore extensions and free group algebras in division rings [Internet]. Journal of Algebra. 2016 ; 455 235-250.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.jalgebra.2016.02.011
  • Source: Proceedings of the American Mathematical Society. Unidade: IME

    Subjects: ANÉIS DE GRUPOS, ANÉIS E ÁLGEBRAS ASSOCIATIVOS, GRUPOS NILPOTENTES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Jairo Zacarias e PASSMAN, Donald S. Involutions and free pairs of bicyclic units in integral group rings of non-nilpotent groups. Proceedings of the American Mathematical Society, v. 143, n. 6, p. 2395-2401, 2015Tradução . . Disponível em: https://doi.org/10.1090/S0002-9939-2015-12550-6. Acesso em: 17 nov. 2024.
    • APA

      Gonçalves, J. Z., & Passman, D. S. (2015). Involutions and free pairs of bicyclic units in integral group rings of non-nilpotent groups. Proceedings of the American Mathematical Society, 143( 6), 2395-2401. doi:10.1090/S0002-9939-2015-12550-6
    • NLM

      Gonçalves JZ, Passman DS. Involutions and free pairs of bicyclic units in integral group rings of non-nilpotent groups [Internet]. Proceedings of the American Mathematical Society. 2015 ; 143( 6): 2395-2401.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1090/S0002-9939-2015-12550-6
    • Vancouver

      Gonçalves JZ, Passman DS. Involutions and free pairs of bicyclic units in integral group rings of non-nilpotent groups [Internet]. Proceedings of the American Mathematical Society. 2015 ; 143( 6): 2395-2401.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1090/S0002-9939-2015-12550-6
  • Source: Proceedings of the American Mathematical Society. Unidade: IME

    Subjects: ANÉIS COM DIVISÃO, ANÉIS E ÁLGEBRAS ASSOCIATIVOS, TEORIA DOS GRUPOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Jairo Zacarias e PASSMAN, Donald S. Explicit free groups in division rings. Proceedings of the American Mathematical Society, v. 143, p. 459-468, 2015Tradução . . Disponível em: https://doi.org/10.1090/S0002-9939-2014-12230-1. Acesso em: 17 nov. 2024.
    • APA

      Gonçalves, J. Z., & Passman, D. S. (2015). Explicit free groups in division rings. Proceedings of the American Mathematical Society, 143, 459-468. doi:10.1090/S0002-9939-2014-12230-1
    • NLM

      Gonçalves JZ, Passman DS. Explicit free groups in division rings [Internet]. Proceedings of the American Mathematical Society. 2015 ; 143 459-468.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1090/S0002-9939-2014-12230-1
    • Vancouver

      Gonçalves JZ, Passman DS. Explicit free groups in division rings [Internet]. Proceedings of the American Mathematical Society. 2015 ; 143 459-468.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1090/S0002-9939-2014-12230-1
  • Source: Journal of Algebra. Unidade: IME

    Subjects: ANÉIS COM DIVISÃO, ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Jairo Zacarias e PASSMAN, Donald S. Free groups in normal subgroups of the multiplicative group of a division ring. Journal of Algebra, v. 440, p. 128-144, 2015Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2015.05.020. Acesso em: 17 nov. 2024.
    • APA

      Gonçalves, J. Z., & Passman, D. S. (2015). Free groups in normal subgroups of the multiplicative group of a division ring. Journal of Algebra, 440, 128-144. doi:10.1016/j.jalgebra.2015.05.020
    • NLM

      Gonçalves JZ, Passman DS. Free groups in normal subgroups of the multiplicative group of a division ring [Internet]. Journal of Algebra. 2015 ; 440 128-144.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.jalgebra.2015.05.020
    • Vancouver

      Gonçalves JZ, Passman DS. Free groups in normal subgroups of the multiplicative group of a division ring [Internet]. Journal of Algebra. 2015 ; 440 128-144.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.jalgebra.2015.05.020
  • Source: Israel Journal of Mathematics. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ANÉIS COM DIVISÃO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERREIRA, Vitor de Oliveira e GONÇALVES, Jairo Zacarias. Free symmetric and unitary pairs in division rings infinite-dimensional over their centers. Israel Journal of Mathematics, v. 210, n. 1, p. 297-321, 2015Tradução . . Disponível em: https://doi.org/10.1007/s11856-015-1253-x. Acesso em: 17 nov. 2024.
    • APA

      Ferreira, V. de O., & Gonçalves, J. Z. (2015). Free symmetric and unitary pairs in division rings infinite-dimensional over their centers. Israel Journal of Mathematics, 210( 1), 297-321. doi:10.1007/s11856-015-1253-x
    • NLM

      Ferreira V de O, Gonçalves JZ. Free symmetric and unitary pairs in division rings infinite-dimensional over their centers [Internet]. Israel Journal of Mathematics. 2015 ; 210( 1): 297-321.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1007/s11856-015-1253-x
    • Vancouver

      Ferreira V de O, Gonçalves JZ. Free symmetric and unitary pairs in division rings infinite-dimensional over their centers [Internet]. Israel Journal of Mathematics. 2015 ; 210( 1): 297-321.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1007/s11856-015-1253-x
  • Source: International Journal of Algebra and Computation. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ANÉIS COM DIVISÃO, ÁLGEBRAS DE LIE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERREIRA, Vitor de Oliveira e GONÇALVES, Jairo Zacarias e SÁNCHEZ, Javier. Free symmetric algebras in division rings generated by enveloping algebras of Lie algebras. International Journal of Algebra and Computation, v. 25, n. 6, p. 1075-1106, 2015Tradução . . Disponível em: https://doi.org/10.1142/S0218196715500319. Acesso em: 17 nov. 2024.
    • APA

      Ferreira, V. de O., Gonçalves, J. Z., & Sánchez, J. (2015). Free symmetric algebras in division rings generated by enveloping algebras of Lie algebras. International Journal of Algebra and Computation, 25( 6), 1075-1106. doi:10.1142/S0218196715500319
    • NLM

      Ferreira V de O, Gonçalves JZ, Sánchez J. Free symmetric algebras in division rings generated by enveloping algebras of Lie algebras [Internet]. International Journal of Algebra and Computation. 2015 ; 25( 6): 1075-1106.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1142/S0218196715500319
    • Vancouver

      Ferreira V de O, Gonçalves JZ, Sánchez J. Free symmetric algebras in division rings generated by enveloping algebras of Lie algebras [Internet]. International Journal of Algebra and Computation. 2015 ; 25( 6): 1075-1106.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1142/S0218196715500319
  • Source: Journal of Group Theory. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, TEORIA DOS GRUPOS, ANÉIS COM DIVISÃO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Jairo Zacarias. Constructing free groups in a normal subgroup of the multiplicative group of division rings. Journal of Group Theory, v. 18, n. 5, p. 829-843, 2015Tradução . . Disponível em: https://doi.org/10.1515/jgth-2015-0018. Acesso em: 17 nov. 2024.
    • APA

      Gonçalves, J. Z. (2015). Constructing free groups in a normal subgroup of the multiplicative group of division rings. Journal of Group Theory, 18( 5), 829-843. doi:10.1515/jgth-2015-0018
    • NLM

      Gonçalves JZ. Constructing free groups in a normal subgroup of the multiplicative group of division rings [Internet]. Journal of Group Theory. 2015 ; 18( 5): 829-843.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1515/jgth-2015-0018
    • Vancouver

      Gonçalves JZ. Constructing free groups in a normal subgroup of the multiplicative group of division rings [Internet]. Journal of Group Theory. 2015 ; 18( 5): 829-843.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1515/jgth-2015-0018
  • Source: International Journal of Algebra and Computation. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ANÉIS DE GRUPOS, GRUPOS SUPERSOLÚVEIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Jairo Zacarias e LICHTMAN, Alexander I. Free subgroups in division rings generated by group rings of soluble groups. International Journal of Algebra and Computation, v. 24, n. 8, p. 1127-1140, 2014Tradução . . Disponível em: https://doi.org/10.1142/S0218196714500490. Acesso em: 17 nov. 2024.
    • APA

      Gonçalves, J. Z., & Lichtman, A. I. (2014). Free subgroups in division rings generated by group rings of soluble groups. International Journal of Algebra and Computation, 24( 8), 1127-1140. doi:10.1142/S0218196714500490
    • NLM

      Gonçalves JZ, Lichtman AI. Free subgroups in division rings generated by group rings of soluble groups [Internet]. International Journal of Algebra and Computation. 2014 ; 24( 8): 1127-1140.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1142/S0218196714500490
    • Vancouver

      Gonçalves JZ, Lichtman AI. Free subgroups in division rings generated by group rings of soluble groups [Internet]. International Journal of Algebra and Computation. 2014 ; 24( 8): 1127-1140.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1142/S0218196714500490
  • Source: Journal of Algebra. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERREIRA, Vitor de Oliveira e GONÇALVES, Jairo Zacarias e SÁNCHEZ, Javier. Free symmetric group algebras in division rings generated by poly-orderable groups. Journal of Algebra, v. 392, p. 69-84, 2013Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2013.06.016. Acesso em: 17 nov. 2024.
    • APA

      Ferreira, V. de O., Gonçalves, J. Z., & Sánchez, J. (2013). Free symmetric group algebras in division rings generated by poly-orderable groups. Journal of Algebra, 392, 69-84. doi:10.1016/j.jalgebra.2013.06.016
    • NLM

      Ferreira V de O, Gonçalves JZ, Sánchez J. Free symmetric group algebras in division rings generated by poly-orderable groups [Internet]. Journal of Algebra. 2013 ; 392 69-84.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.jalgebra.2013.06.016
    • Vancouver

      Ferreira V de O, Gonçalves JZ, Sánchez J. Free symmetric group algebras in division rings generated by poly-orderable groups [Internet]. Journal of Algebra. 2013 ; 392 69-84.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.jalgebra.2013.06.016
  • Source: International Journal of Algebra and Computation. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, TEORIA DOS NÚMEROS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LOPATIN, Artem A e SHESTAKOV, Ivan P. Associative nil-algebras over finite fields. International Journal of Algebra and Computation, v. 23, n. 8, p. 1881-1894, 2013Tradução . . Disponível em: https://doi.org/10.1142/S0218196713500471. Acesso em: 17 nov. 2024.
    • APA

      Lopatin, A. A., & Shestakov, I. P. (2013). Associative nil-algebras over finite fields. International Journal of Algebra and Computation, 23( 8), 1881-1894. doi:10.1142/S0218196713500471
    • NLM

      Lopatin AA, Shestakov IP. Associative nil-algebras over finite fields [Internet]. International Journal of Algebra and Computation. 2013 ; 23( 8): 1881-1894.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1142/S0218196713500471
    • Vancouver

      Lopatin AA, Shestakov IP. Associative nil-algebras over finite fields [Internet]. International Journal of Algebra and Computation. 2013 ; 23( 8): 1881-1894.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1142/S0218196713500471
  • Source: International Journal of Algebra and Computation. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Jairo Zacarias e DEL RIO, Ángel. Bass cyclic units as factors in a free group in integral group ring units. International Journal of Algebra and Computation, v. 21, n. 4, p. 531-545, 2011Tradução . . Disponível em: https://doi.org/10.1142/S0218196711006327. Acesso em: 17 nov. 2024.
    • APA

      Gonçalves, J. Z., & Del Rio, Á. (2011). Bass cyclic units as factors in a free group in integral group ring units. International Journal of Algebra and Computation, 21( 4), 531-545. doi:10.1142/S0218196711006327
    • NLM

      Gonçalves JZ, Del Rio Á. Bass cyclic units as factors in a free group in integral group ring units [Internet]. International Journal of Algebra and Computation. 2011 ; 21( 4): 531-545.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1142/S0218196711006327
    • Vancouver

      Gonçalves JZ, Del Rio Á. Bass cyclic units as factors in a free group in integral group ring units [Internet]. International Journal of Algebra and Computation. 2011 ; 21( 4): 531-545.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1142/S0218196711006327
  • Source: Journal of Algebra and its Applications. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Jairo Zacarias e PASSMAN, Donald S. Involutions and free pairs of Bass cyclic units in ntegral group rings. Journal of Algebra and its Applications, v. 10, n. 4, p. 711-725, 2011Tradução . . Disponível em: https://doi.org/10.1142/S0219498811004872. Acesso em: 17 nov. 2024.
    • APA

      Gonçalves, J. Z., & Passman, D. S. (2011). Involutions and free pairs of Bass cyclic units in ntegral group rings. Journal of Algebra and its Applications, 10( 4), 711-725. doi:10.1142/S0219498811004872
    • NLM

      Gonçalves JZ, Passman DS. Involutions and free pairs of Bass cyclic units in ntegral group rings [Internet]. Journal of Algebra and its Applications. 2011 ; 10( 4): 711-725.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1142/S0219498811004872
    • Vancouver

      Gonçalves JZ, Passman DS. Involutions and free pairs of Bass cyclic units in ntegral group rings [Internet]. Journal of Algebra and its Applications. 2011 ; 10( 4): 711-725.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1142/S0219498811004872

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024